
CSE 30321 – Lecture 07-09 – In Class Example Handout

Part A: A Simple, MIPS-based Procedure:

Swap Procedure Example:
Let’s write the MIPS code for the following statement (and function call):

if (A[i] > A [i+1]) // $s0 = A
swap (&A[i], &A[i+1]) // $t0 = 4*i

We will assume that:

- The address of A is contained in $s0 ($16)
- The index (4 x i) will be contained in $t0 ($8)

Answer:

The Caller:
 …
 // Calculate address of A(i)
 add $s1, $s0, $t0 // $s1  address of array element i in $s1

 // Load data
 lw $t2, 0($s1) // load A(i) into temporary register $t2
 lw $t3, 4($s1) // load A(i+1) into temporary register $t3

 // Check condition
 ble $t2, $t3, else // is A(i) <= A(i+1)? If so, don’t swap

 // if >, fall through to here…
 addi $a0, $t0, 0 // load address of x into argument register (i.e. A(i))
 addi $a1, $t0, 4 // load address of y into argument register (i.e. A(i+1))

 // Call Swap function
 jal swap // PC  address of swap; $ra | $31 = PC + 4
else:

// Note that swap is “generic” – i.e. b/c of the way data is passed in, we do not assume the values
// to be swapped are in contiguous memory locations – so two distinct physical addresses are
// passed in

Swap:
 lw $t0, 0($a0) // $t0 = mem(x) – use temporary register
 lw $t1 0($a1) // $t1 = mem(y) – use temporary register
 sw 0($a0), $t1 // do swap
 sw 0($a1), $t0 // do swap
 jr $ra // $ra should have PC = PC + 4
 // PC = PC + 4 should be the next address after jump to swap

Part B: Procedures with Callee Saving (old exam question):
Assume that you have written the following C code:

//---
int variable1 = 10; // global variable
int variable2 = 20; // global variable
//---
int main(void) {
 int i = 1; // assigned to register s0
 int j = 2; // assigned to register s1
 int k = 3; // assigned to register a3
 int m;
 int n;

 m = addFourNumbers(i, j);

 n = i + j; // 1 + 2 = 3

 printf(“m is %d\n”, m); // printf modifies no registers
 printf(“n is %d\n”, n); // printf modifies no registers
 printf(“k is %d\n”, k); // printf modifies no registers
}
//---
int addFourNumbers(int x, int y) {
 int i; // assigned to register s0
 int j; // assigned to register s1
 int k; // assigned to register s2

 i = x + y; // 1 + 2 = 3
 j = variable1 + variable2; // 10 + 20 = 30
 k = i + j; // 3 + 30 = 33

 return k;
}
//---

The output of the printf statements in main is: m is 33
 n is 3
 k is 3

Assume this program was compiled into MIPS assembly language with the register conventions
described on Slide 12 of Lecture 07/08. Also, note that in the comments of the program, I have
indicated that certain variables will be assigned to certain registers when this program is compiled and
assembled. Using a callee calling convention, answer the questions below:

Q-i: Ideally, how many arguments to the function addFourNumbers must be
 saved on the stack?

0. By default, arguments should be copied into registers.

Q-ii: What (if anything) should the assembly language for main() do right
 before calling addFourNumbers?

Copy values of s registers into argument registers; save value of k (in $a3) onto the stack

Q-iii: What is the first thing that the assembly language for addFourNumbers
 should do upon entry into the function call?

Callee save the s registers

Q-iv: What is the value of register number 2 (i.e. 00102) after main completes
 (assuming there were no other function calls, no interrupts, no context
 switches, etc.)

33. Register 2 = v0. It should not have changed.
(different answer if you assume printf returns value)

Q-v: Does the return address register ($ra) need to be saved on the stack
 for this program? Justify your answer. (Assume main() does not return).

No – if no other procedures are called.

Part C: Procedures with Callee Saving (old exam question):
Assume you have the following C code:

int main(void) {
 int x = 10; # x maps to $s1
 int y = 20; # y maps to $s2
 int z = 30; # z maps to $s3

 int a; # a maps to $t0

int b; # b maps to $t1
int c; # c maps to $t2

 c = x + y;

 a = multiply(x, z);

 b = c + x;
}

int multiply(int a, int b) {
 int q; # q maps to $t0
 int z; # z maps to $t1

 q = add();
 z = a*b;

 return z;
}

int add() {
 int m = 5; # m maps to $t4
 int n = 4; # n maps to $t5
 int y;
 y = a + b;
 return y;
}

Assuming the MIPS calling convention, answer questions A-E. Note – no assembly code/machine
instructions are required in your answers; simple explanations are sufficient.

■

▲

Q-i: What, if anything must main() do before calling multiply?

- Save $t2 to stack, needed upon return.
- Also, copy $s1 to $a0 and copy $s3 to $a1

Q-ii: Does multiply need to save anything to the stack? If so, what?

- $31
- The s registers associated with main()
- The argument registers passed into multiply before calling add()

Q-iii: Assume that multiply returns its value to main() per the MIPS register convention. What

machine instructions might we see at ▲ to completely facilitate the function return?

- We have to copy the value in $t1 to $2.
- We would call a jal instruction
- We would adjust the stack pointer, restored saved registers.

Q-iv: What line of code should the return address register point to at ▲?

- b = c + x

Other answers were considered correct based on stated assumptions.

Q-v: What line of code should the return address register point to at ■?

- b = c + x

Other answers were considered correct based on stated assumptions.

Part D: More Complex Example:
Let’s write the MIPS code for the following:

for(i=1; i<5; i++) { int function(int, int) { Assume:
 A(i) = B*d(i); A(i) = A(i-1); Addr. of A = $18
 if(d(i) >= e) { e = A(i); Addr. of d = $19
 e = function(A,i); return e; B = $20
 } } e = $21
}

 (We pass in starting “address of A” and “i”)

Question/Comment My Solution Comment
1st, want to initialize
loop variables. What
registers should we
use, how should we
do it?

addi $16, $0, 1
addi $17, $0, 5

Initialize i to 1
Initialize $17 to 5

(in both cases, saved registers are used – we
want this data available post function call)

2nd, calculate address
of d(i) and load. What
kind of registers
should we use?

Loop: sll $8, $16, 2
 add $8, $19, $8
 lw $9, 0($8)

store i*4 in $8 (temp register OK)
add start of d to i*4 to get address of d(i)
load d(i)  needs to be in register to do math

Calculate B*d(i)

mult $10, $9, $20 # store result in temp to write back to memory

Calculate address of
A(i)

sll $11, $16, 2
add $11, $11, $18

CANNOT do:
add $11, $8, $18

Same as above

We overwrote
But, would have been better to save i*4
 Why? Lower CPI

Store result into A(i)

sw $10, 0($11) # Store result into a(i)

Now, need to check
whether or not d(i) >=
e. How? Assume no
ble.

slt $1, $9, $22

bne $0, $1, start again

Check if $9 < $22 (i.e. d(i) < e)
Still OK to use $9  not overwritten
(temp does not mean goes away immediately)

if d(i) < e, $1 = 1
if d(i) >= e, $1 = 0 (and we want to call function)
(if $1 != 0, do not want to call function)

Given the above
setup, what comes
next? (Falls through to
the next function call).
Assume argument
registers, what setup
code is needed?

 add $4, $18, $0
 add $5, $16, $0
x: jal function

load address of (A) into an argument register
load i into an argument register
call function; $31  x + 4 (if x = PC of jal)

Finish rest of code:
What to do? Copy
return value to $21.
Update counter, check
counter. Where is
“start again” at?

 add $21, $0, $2
sa: addi $16, $16, 1
 bne $16, $17, loop

returned value reassigned to $21
update i by 1 (array index)
if i < 5, loop

A better way:
Could make array index multiple of 4

Function Code
Assume you will
reference A(i-1) with lw
… 0($x). What 4
instruction sequence
is required?

func: subi $5, $5, 1
 sll $8, $5, $2
 add $9, $4, $8
 lw $10, 0($9)

subtract 1 from i
multiply i by 4  note
add start of address to (i-1)
load A(i-1)

Finish up function.

sw $10, 4($9)
add $2, $10, $0

store A(i-1) in A(i)
put A(i-1) into return register ($2)

Return

jr $31 # PC = contents of $31

Part E: Nested Function Calls

int main(void) { foo1() { foo2() {
 i = 5; # i = $16 a = 17; # a = $16 x = 25; # x = $16
 j = 6; # j = $17 b = 24; # b = $17 y = 12; # y = $17
 k = foo1(); … }
 j = j + 1; foo2();
} }

Let’s consider how we might use the stack to support these nested calls.

Question:
How do we make sure that data for i, j ($16, $17) is preserved here?

Answer:
Use a stack.

By convention, the stack grows up:

Let’s look at main():

- Assume we want to save $17 and $16
o (we’ll use the stack pointer)

- Also, anything else we want to save?
o $31 – if nested calls.

- How?
o subi $sp, $sp, 12 # make space for 3 data words

o Example: assume $sp = 100, therefore $sp = 100 – 12 = 88

- Then, store results:

o sw 8($sp), $16 # address: 8 + $sp = 8 + 88 = 96
o sw 4($sp), $17 # address: 4 + $sp = 4 + 88 = 92
o sw 0($sp), $31 # address: 0 + $sp = 0 + 88 = 88

Now, in Foo1() … assume A and B are needed past Foo2() … how do we save them?

- We can do the same as before
o Update $sp by 12 and save

Similarly, can do the same for Foo2()

Low Memory Address (0)!

High Memory Address (N)!

$sp!

$spold!
100

!

96
!

92
!

88
!

$spnew!

(2) On function call, $sp decremented!

(1) $sp!(3) Also a register
called “Frame Pointer”!

Low Memory Address (0)!

High Memory Address (N)!

$sp!

$spold!
100

!

96
!

92
!

88
!

$spnew!

(2) On function call, $sp decremented!

(1) $sp!(3) Also a register
called “Frame Pointer”!

Now, assume that we are returning from Foo1() to main(). What do we do?

- The stack pointer should equal the value before the Foo1() call (i.e. 88)

lw $31, 0($sp) # $31  memory(0 + 88) (LIFO)
lw $17, 4($sp) # $17  memory(4 + 88)
lw $16, 8($sp) # $16  memory(8 + 88)

Finally, update $sp: addi $sp, $sp, 12 ($sp now = 100 again)

Let’s talk about the Frame Pointer too:

$fp (frame pointer) points to the “beginning of the stack” (ish) – or the first word in frame of a procedure

Why use a $fp?

- Stack used to store variables local to procedure that may not fit into registers
- $sp can change during procedure (e.g. as just seen)

o Results in different offsets that may make procedure harder to understand
- $fp is stable base register for local memory references

For example:

Because $sp can change dynamically, often easier/intuitive to reference extra arguments via stable $fp
– although can use $sp with a little extra math

Low Memory Address (0)!

High Memory Address (N)!

$sp!

$spold!
100

!

96
!

92
!

88
!

$spnew!

(2) On function call, $sp decremented!

(1) $sp!(3) Also a register
called “Frame Pointer”!

$fp (might be here)
!

$31
!

$17
!

$16
!

$sp (in foo1() = 88)
!

$fp generally > $sp
!

Saved $ra, $fp
!

Saved saved regs
!

More Generally:
! Low Memory Address (0)!

High Memory Address (N)!

Saved args
!

$fp
!

$sp
!

-"Therefore procedure might reference extra function argument as 0($fp)!
-"What if 2 saved arguments? What next?!

-"With this convention: lw $t0, 4($fp)!

Because $sp can change dynamically, often easier/intuitive to
reference extra arguments via stable $fp – although can use $sp

with a little extra math!

Part F: Recursive Function Calls

Let’s consider how we might use the stack to support these nested calls. We’ll also make use of the
frame pointer ($fp).

Code
Section

Address Label MIPS Instruction Comments
1 0 Fact: subi $sp, $sp, 12 Make room for 3 pieces of data on the stack;

$fp, $sp, and 1 local argument
 4 sw 8($sp), $ra If $sp = 88, M(88 + 8)  value of $ra
 8 sw 4($sp), $fp If $sp = 88, M(88 + 4)  value of $fp
 12 subi $fp, $fp, 12 Update the frame pointer

2 16 bgtz $a0, L2 If N > 0 (i.e. not < 1) we’re not done
 we assume N is in $a0

4 20 addi $v0, $0, 1 We eventually finish and want to return 1,
therefore put 1 in return register

 24 j L1 Jump to return code
3 28 L2: sw $a0, 0($fp) Save argument N to stack

(we’ll need it when we return)
 32 subi $a0, $a0, 1 Decrement N (N = N – 1), put result in $a0
 36 jal Fact Call Factorial() again

6 40 lw $t0, 0($f0) Load N (saved at *** to stack)
 44 mult $v0, $v0, $t0 Store result in $v0

5 48 L1: lw $ra, 8($sp) Restore return address
 52 lw $fp, 4($sp) Restore frame pointer
 56 addi $sp, $sp, 12 Pop stack
 60 jr $ra Return from factorial

Part H: Recursive Function Calls

Part A:
Let!s consider how we might use the stack to support these nested calls. We!ll also make use of the
frame pointer ($fp).

Code
Section

Address Label MIPS Instruction Comments

1 0 Fact: subi $sp, $sp, 12 Make room for 3 pieces of data on the stack;
$fp, $sp, and 1 local argument

 4 sw 8($sp), $ra If $sp = 88, M(88 + 8) ! value of $ra

 8 sw 4($sp), $fp If $sp = 88, M(88 + 4) ! value of $fp

 12 subi $fp, $fp, 12 Update the frame pointer

2 16 bgtz $a0, L2 If N > 0 (i.e. not < 1) we!re not done
" we assume N is in $a0

4 20 addi $v0, $0, 1 We eventually finish and want to return 1,
therefore put 1 in return register

 24 j L1 Jump to return code

3 28 L2: sw $a0, 0($fp) Save argument N to stack
(we!ll need it when we return)

 32 subi $a0, $a0, 1 Decrement N (N = N – 1), put result in $a0

 36 jal Fact Call Factorial() again

6 40 lw $t0, 0($f0) Load N (saved at *** to stack)

 44 mult $v0, $v0, $t0 Store result in $v0

5 48 L1: lw $ra, 8($sp) Restore return address

 52 lw $fp, 4($sp) Restore frame pointer

 56 addi $sp, $sp, 12 Pop stack

 60 jr $ra Return from factorial

1 (immediately inside function)!

2 (n<1 check)!

3 (recursive function call)!

4 (put "1# in return register)!

5 (return)!

6 (multiply function values)!

Part B: PLACE COMPLETED FACTORIAL UP ON THE SCREEN.
Let!s walk through this code (and memory) assuming that we call the factorial function with the number
2. For your reference, I!ve included tables below that you can use to keep track of both instruction
execution and the contents of memory. We!ll assume that $sp is initially 112 and that $fp is 124.

Code Trace:
1st Call to Factorial 2nd Call to Factorial 3rd Call to Factorial
Addr What Happens Addr What Happens Addr What Happens

0 $sp = $sp-12; $sp ! 100 0 $sp = $sp-12; $sp ! 88 0 $sp = $sp-12; $sp ! 76

4 M(100+8) = M(108) ! $ra 4 M(96) ! $ra ($ra=40) 4 M(84) ! $ra ($ra=40)

8 M(100+4) = M(104) ! $fp 8 M(92) ! $fp ($fp =112) 8 M(80) ! $fp ($fp =100)

12 $fp = $fp-12; $fp ! 112 12 $fp = $fp-12; $fp ! 100 12 $fp = $fp-12; $fp ! 88

16 2 is greater than 0 16 1 is greater than 0 16 0 is NOT greater than 0

28 M($fp / 112) ! N (store #) 28 M($fp / 100) ! N (store #) (start to return)

32 N = N-1 (new arg = 1) 32 N = N-1 (new arg = 0)

36 jal Fact ($ra = 4010)

36 jal Fact ($ra = 4010)

Return from 3rd Call Return from 2nd Call Return form 1st Call
Addr What Happens Addr What Happens Addr What Happens

20 addi $v0, $0, 1
(return 1)

40 lw $t0, 0($fp);
$t0 ! M(100); $t0 ! 1

40 lw $t0, 0($fp);
$t0 ! M(112); $t0 ! 2

24 j L1 44 $v0 ! 1x1
$v0 = return address reg.

44 $v0 ! 1x2
$v0 ! $v0 x $t0

48 $ra ! M($sp+8) ! M(84)
$ra ! 40

48 $ra ! M($sp+8) ! M(96)
$ra ! 40

48 $ra ! M($sp+8) ! M(108)
$ra ! factorial caller RA

52 $fp ! M($sp+4) ! M(80)
$fp ! 100

52 $fp ! M($sp+4) ! M(92)
$fp ! 112

52 $fp ! M($sp+4) ! M(104)
$fp ! factorial caller FP

56 $sp = 76+12; $sp ! 88
(pop stack)

56 $sp ! 88 + 12 = 100 56 $sp ! 100 + 12 = 112

60 jr $ra implies that PC ! 40

60 jr $ra makes: PC ! 40

60 jr $ra (PC + 4 of fact caller)

Memory Contents: (Assume main() calls function which calls factorial.)
Memory
Address

Before 1st
Fact Call

During 1st
Fact Call

During 2nd
Fact Call

During 3rd
Fact Call

Return
from 3rd

Return
from 2nd

Return
from 1st

76 Current $sp

80 Saved $fp
from prior call
(100)

84 Saved $ra of
fact (40)

88 Current $sp Current $fp
N never stored

$sp 3
rd

 fact
call out

92 Saved $fp
from prior call
(112)

96 Saved $ra of
fact (40)

100 Current $sp Current $fp
N = 1

 $sp 2
nd

 fact
call out

104 Saved $fp of
function calling
fact (124)

108 Saved $ra of
function calling
fact

112 Current $sp Current $fp
N = 2

 $sp 1
st

 fact
call out

116 Saved $fp of
main

120 Saved $ra of
main

Part B: PLACE COMPLETED FACTORIAL UP ON THE SCREEN.
Let!s walk through this code (and memory) assuming that we call the factorial function with the number
2. For your reference, I!ve included tables below that you can use to keep track of both instruction
execution and the contents of memory. We!ll assume that $sp is initially 112 and that $fp is 124.

Code Trace:
1st Call to Factorial 2nd Call to Factorial 3rd Call to Factorial
Addr What Happens Addr What Happens Addr What Happens

0 $sp = $sp-12; $sp ! 100 0 $sp = $sp-12; $sp ! 88 0 $sp = $sp-12; $sp ! 76

4 M(100+8) = M(108) ! $ra 4 M(96) ! $ra ($ra=40) 4 M(84) ! $ra ($ra=40)

8 M(100+4) = M(104) ! $fp 8 M(92) ! $fp ($fp =112) 8 M(80) ! $fp ($fp =100)

12 $fp = $fp-12; $fp ! 112 12 $fp = $fp-12; $fp ! 100 12 $fp = $fp-12; $fp ! 88

16 2 is greater than 0 16 1 is greater than 0 16 0 is NOT greater than 0

28 M($fp / 112) ! N (store #) 28 M($fp / 100) ! N (store #) (start to return)

32 N = N-1 (new arg = 1) 32 N = N-1 (new arg = 0)

36 jal Fact ($ra = 4010)

36 jal Fact ($ra = 4010)

Return from 3rd Call Return from 2nd Call Return form 1st Call
Addr What Happens Addr What Happens Addr What Happens

24 j L1 40 lw $t0, 0($fp);
$t0 ! M(100); $t0 ! 1

40 lw $t0, 0($fp);
$t0 ! M(112); $t0 ! 2

48 $ra ! M($sp+8) ! M(84)
$ra ! 40

44 $v0 ! 1x1
$v0 = return address reg.

44 $v0 ! 1x2
$v0 ! $v0 x $t0

52 $fp ! M($sp+4) ! M(80)
$fp ! 100

48 $ra ! M($sp+8) ! M(96)
$ra ! 40

48 $ra ! M($sp+8) ! M(108)
$ra ! factorial caller RA

56 $sp = 76+12; $sp ! 88
(pop stack)

52 $fp ! M($sp+4) ! M(92)
$fp ! 112

52 $fp ! M($sp+4) ! M(104)
$fp ! factorial caller FP

60 jr $ra implies that PC ! 40 56 $sp ! 88 + 12 = 100 56 $sp ! 100 + 12 = 112

60 jr $ra makes: PC ! 40

60 jr $ra (PC + 4 of fact caller)

Memory Contents: (Assume main() calls function which calls factorial.)
Memory
Address

Before 1st
Fact Call

During 1st
Fact Call

During 2nd
Fact Call

During 3rd
Fact Call

Return
from 3rd

Return
from 2nd

Return
from 1st

76 Current $sp

80 Saved $fp
from prior call
(100)

84 Saved $ra of
fact (40)

88 Current $sp Current $fp
N never stored

$sp 3
rd

 fact
call out

92 Saved $fp
from prior call
(112)

96 Saved $ra of
fact (40)

100 Current $sp Current $fp
N = 1

 $sp 2
nd

 fact
call out

104 Saved $fp of
function calling
fact (124)

108 Saved $ra of
function calling
fact

112 Current $sp Current $fp
N = 2

 $sp 1
st

 fact
call out

116 Saved $fp of
main

120 Saved $ra of
main

124 Current $fp

1 make room
for $sp, $fp, N!

2 save $ra, $fp
(prep for new call)!

3 update $fp to
define start of call
frame!

Callee saving!

4 N > 1?!

0 Main() calls function which calls factorial!

5 If so, store old value of N (data
that needs to be saved), ref $fp!

6, 7 Calculate number to pass to
function, call factorial again!

Part B: PLACE COMPLETED FACTORIAL UP ON THE SCREEN.
Let!s walk through this code (and memory) assuming that we call the factorial function with the number
2. For your reference, I!ve included tables below that you can use to keep track of both instruction
execution and the contents of memory. We!ll assume that $sp is initially 112 and that $fp is 124.

Code Trace:
1st Call to Factorial 2nd Call to Factorial 3rd Call to Factorial
Addr What Happens Addr What Happens Addr What Happens

0 $sp = $sp-12; $sp ! 100 0 $sp = $sp-12; $sp ! 88 0 $sp = $sp-12; $sp ! 76

4 M(100+8) = M(108) ! $ra 4 M(96) ! $ra ($ra=40) 4 M(84) ! $ra ($ra=40)

8 M(100+4) = M(104) ! $fp 8 M(92) ! $fp ($fp =112) 8 M(80) ! $fp ($fp =100)

12 $fp = $fp-12; $fp ! 112 12 $fp = $fp-12; $fp ! 100 12 $fp = $fp-12; $fp ! 88

16 2 is greater than 0 16 1 is greater than 0 16 0 is NOT greater than 0

28 M($fp / 112) ! N (store #) 28 M($fp / 100) ! N (store #) (start to return)

32 N = N-1 (new arg = 1) 32 N = N-1 (new arg = 0)

36 jal Fact ($ra = 4010)

36 jal Fact ($ra = 4010)

Return from 3rd Call Return from 2nd Call Return form 1st Call
Addr What Happens Addr What Happens Addr What Happens

20 addi $v0, $0, 1
(return 1)

40 lw $t0, 0($fp);
$t0 ! M(100); $t0 ! 1

40 lw $t0, 0($fp);
$t0 ! M(112); $t0 ! 2

24 j L1 44 $v0 ! 1x1
$v0 = return address reg.

44 $v0 ! 1x2
$v0 ! $v0 x $t0

48 $ra ! M($sp+8) ! M(84)
$ra ! 40

48 $ra ! M($sp+8) ! M(96)
$ra ! 40

48 $ra ! M($sp+8) ! M(108)
$ra ! factorial caller RA

52 $fp ! M($sp+4) ! M(80)
$fp ! 100

52 $fp ! M($sp+4) ! M(92)
$fp ! 112

52 $fp ! M($sp+4) ! M(104)
$fp ! factorial caller FP

56 $sp = 76+12; $sp ! 88
(pop stack)

56 $sp ! 88 + 12 = 100 56 $sp ! 100 + 12 = 112

60 jr $ra implies that PC ! 40

60 jr $ra makes: PC ! 40

60 jr $ra (PC + 4 of fact caller)

Memory Contents: (Assume main() calls function which calls factorial.)
Memory
Address

Before 1st
Fact Call

During 1st
Fact Call

During 2nd
Fact Call

During 3rd
Fact Call

Return
from 3rd

Return
from 2nd

Return
from 1st

76 Current $sp

80 Saved $fp
from prior call
(100)

84 Saved $ra of
fact (40)

88 Current $sp Current $fp
N never stored

$sp 3
rd

 fact
call out

92 Saved $fp
from prior call
(112)

96 Saved $ra of
fact (40)

100 Current $sp Current $fp
N = 1

 $sp 2
nd

 fact
call out

104 Saved $fp of
function calling
fact (124)

108 Saved $ra of
function calling
fact

112 Current $sp Current $fp
N = 2

 $sp 1
st

 fact
call out

116 Saved $fp of
main

120 Saved $ra of
main

8a More of
the same!

9 $ra is in
factorial!

8a More of
the same,
$ra = 40!

10a More
of the same!

10c Now meet exit criteria!

10b More of
the same,!
$ra = 40!

10d Undo stack pushes,
“restore” $ra, $fp!

10e Pop Stack!

11 Go back
to jal + 4!

12 Restore saved variable, calculate value to return: $v0
from old call, stored N; calculated value becomes $v0!

13a Return as before!

13b Pop Stack!

14a Calculate next value to return!

14b Pop Stack; restore
address of function that
called factorial!

