AMD

IAthlon~ ‘ intel
VS.
-y Pentium’

Lecture 07-09
MIPS Programs and Procedures

for i=0; i<5; i++ {
a = (a*b) + c;
}

MULT r1,r2,r3 #r1 € r2*r3
ADD r2,r1,r4 J' #12 € rierd

Suggested reading:
(HP Chapter 2.8)
(for extra examples, see Chapters 2.12 and 2.13)

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100

HLL code translation

Fundamental lesson(s) Why it’s important...
+ Over the next 3 lectures (using the MIPS ISA as context) + If you every write a compiler or OS some day, you will
I’'ll explain: need to be aware of, and code for all of the issues to be
— How functions are treated and processed in assembly discussed over the next 3 lectures
— How system calls are enabled in assembly
— How exceptions are handled in assembly + If you understand what architectural overhead may be

associated with (compiled) procedure calls, you should

+ I'll also explain why it’s important that register be able to write much more efficient HLL code

conventions be followed

Practical Procedures Practical Procedures

Have already seen that you don’t necessarily make N copies of

for | bod For example: Might look like this:
or loop body
int main(void) { i=%$6 #iin an arg reg.
. . . int 1i;
Thus: Might look like this: int 3; addi § 5, $0, 7 #argreg. =7
for (i=0; i<N; i++) { #N=$2,i=$3 . . j power
a=b+ c; J = power(i, 7); call:
14
- . subi $2, $2, 1 #N=N-1 }
d=a+e; loop: add $4, $5, $6 #a=b+c
f=d+ i; P: add $7' $4’ $8 #d=a+e int power(int i, int n) { power: adg%% i% $i|0
} add $9, $7, $10 #f=d+i int 3, k; , 00D: ;“m;%’ 56, $6
addi $3, $3, 1 #i=i+1 for (3=0; j<n; J++) P: b
sub 11, $2. $3 #$11 =$3-%2 retur}; T('l*l; 2ubl$11, $5‘ $3
bneq $11, $0, loop #if $11 1= 0, loop) ’ bneq $11, $0, loop
add $2, $6, $0 # data in ret. reg.

jcall

You wouldn’t make multiple copies of a machine _
instruction function either... Advantage: Much greater code density.

(especially valuable for library routines, etc.)

MIPS Procedure Handling

U The big picture: o 0
Caller Callee M
Pe jal;-.— ST | $31 = $ra (return ac-j-t.jress)

' A <_]-I' _________________________ > by .. b,
........ IS g PC
Procedure calls are so common that Hi
’ . T . O Need “jump” and “return”: Lo

there’s significant architectural support. = jal ProcAddr #issued in the caller

* jumps to ProcAddr
+ save the return instruction address in $31
* PC = JumpAddr, RF[31]=PC+4;
W jr $31 ($ra) # last instruction in the callee
+ jump back to the caller procedure
« PC = RF[31]

MIPS Registers MIPS Procedure Handling (cont.)

(and the “conventions” associated with them) U What about passing parameters and return values?
Name | R# Usage Preserved on Call W registers $4 - $7 ($a0-$a3) are used to pass first 4

$zero 0The constant value 0 n.a. parameters

$at 1|Reserved for assembler In.a. W returned values are in $2 and $3 ($v0-$v1)

$v0-$v1 2-3lValues for results & expr. eval. no 0 32x32-bit GPRs (General purpose registers)

$a0-$a3 4-7)Arguments no ® $0 = $zero 32 bits

050 815 Temporaries — B $2 - $3 = $v0 - $v1 (return values) :o 0

550557 T6-23lsaved ves B $4 - $7 = $a0 - $a3 (arguments) !

$t8-$t9 24-25|More temporaries no H $8 - $15 = $t0 - $t7 (temporaries)

$k0-$k1 26-27|Reserved for use by 0OS [n.a. W $16 - $23 = $s0 - $s7 (saved) O Y P— b,

Sap 28 Global pointer yes B $24 - $25 = $t8 - $t9 (more temporaries) PC

$sp 29Stack pointer yes B $31 = $ra (return address)

$fp 30|Frame pointer yes

$ra 31[Return address yes Take away: HW support for SW tasks.

9 10

Swap Procedure Example What if ... ?

U More complex procedure calls
B What if your have more than 4 arguments?
® What if your procedure requires more registers than available?
B What about nested procedure calls?
B What happens to $ra if proc1 calls proc 2 which calls procs3,...

1 12

More complex cases

U Register contents across procedure calls are designated as either
caller or callee saved

O MIPS register conventions: (although could make caller/callee do all)

m $t*, $v*, $a*: not preserved across call
+ caller saves them if required

m $s*, $ra: preserved across call
+ callee saves them if required

13

Where is all this stuff saved to?

U Stack
B A dedicated area of memory
m First-In-Last-Out (FILO)
HUsed to
> Hold values passed to a procedure as arguments
> Save register contents when needed
> Provide space for variables local to a procedure

O Stack operations
Hpush: place data on stack (sw in MIPS)
Hpop: remove data from stack (Iw in MIPS)
U Stack pointer
m Stores the address of the top of the stack
m$29 ($sp) in MIPS

15

Recall...

(MIPS registers and associated “conventions)

Name R# Usage Preserved on Call
$zero 0The constant value 0 n.a.
Sat 1|Reserved for assembler n.a.
$v0-$v1 2-3Values for results & expr. eval. no
$a0-$a3 4-7)Arguments no
$t0-$t7 8-15Temporaries no
$s0-$s7 16-23|Saved yes
$t8-$t9 24-25|More temporaries no
$k0-$k1 26-27|Reserved for use by OS n.a.
$gp 28|Global pointer yes
$sp 29IStack pointer yes
$fp 30|Frame pointer yes
$ra 31|Return address yes
14
Where is the stack located?

Memory

Structure
Lower
Mem Reserved
Addr Addr

Instruction i-2

segment E i-1
\ i:1ﬁ);f stack
— i+2 =j

i Data sp=l

i segment \

v
Higher |: Stack
Mem i segment N N
Addr f -

16

Call frames

U Each procedure is associated with a call frame
O Each frame has a frame pointer: $fp ($30)

main { Snap shots of stack
proc1
)
pI‘OC3 Local
proc1 { / variables
Saved
Real
proc2 proc2 eig;nsot)es
) o
Argument 6
proc2 { procl Argument5 | §fp
r0c3] Argument 5 is
F}) main in 0($fp)

Because $sp can change dynamically, often easier/intuitive to reference extra arguments via

stable $fp — although can use $sp with a little extra math
17

Procedure call essentials

+ Summary

Caller saves registers

+ (outside the agreed upon convention i.e. $ax) at point of call
Callee saves registers

+ (per convention i.e. $sx) at point of entry

Callee restores saved registers, and re-adjusts stack
before return

Caller restores saved registers, and re-adjusts stack
before resuming from the call

19

Procedure call essentials:
Good Strategy

+ Caller at call time
— put arguments in $a0..$a4
— save any caller-save temporaries
- jal..., $ra
+ Callee at entry
— allocate all stack space
— save $ra, $fp + $s0..$s7 if necessary
+ Callee at exit
— restore $ra, $fp + $s0..$s7 if used
— deallocate all stack space
— put return value in $v0
+ Caller after return
— retrieve return value from $v0
— restore any caller-save temporaries

Why so strict?

il End Program - Untitled - Notepad x|

[l; This program is not responding.

t responding.

To retun to Windows and check the status of the ng on this
program, click Cancel. \unication on

|f you choose to end the program immediately, you will lose

any unsaved data. To end the program now, click End :\ m

Now.

txplorer

do most work at
callee entry/exit

most of the work

18

g

Number 1:

Operator: g
Result: 281.06

et [Fese]

heck T make sure anv na

might be lost.

Please tell Mi: ft about this

1s Explorer has encountered a problem and needs ;g ptor \
il -

o close. We are somny for the inconvenience.

If you were in the middle of something, the information you were working on

We have created an error report that

anonymous.

Windows Explorer. We will treat this report as confidential and

To see what data this error report contains, click here. j

you can send to help us improve

Send Error Report l Don't Send I

20

Examples:

+ Previous Exam Questions
MIPS leaf procedure
Nested function calls
— Stack pointers and frame pointers
« Capstone example:
— Recursive Factorial!

int fact(int n)
{
if (n < 1)
return (1);
else
return (n * fact(n-1));

21

