
Lecture 07-09  
MIPS Programs and Procedures"

Suggested reading:"
(HP Chapter 2.8)"

(for extra examples, see Chapters 2.12 and 2.13)"
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Processor components"

vs."

Processor comparison"

HLL code translation"The right HW for the 
right application"

Writing more "
efficient code"

Multicore processors 
and programming"

CSE 30321"

Fundamental lesson(s)"
•  Over the next 3 lectures (using the MIPS ISA as context) 

I’ll explain:"
–  How functions are treated and processed in assembly"
–  How system calls are enabled in assembly"
–  How exceptions are handled in assembly"

•  I’ll also explain why it’s important that register 
conventions be followed"
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Why it’s important…"
•  If you every write a compiler or OS some day, you will 

need to be aware of, and code for all of the issues to be 
discussed over the next 3 lectures"

•  If you understand what architectural overhead may be 
associated with (compiled) procedure calls, you should 
be able to write much more efficient HLL code"
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Practical Procedures"
Have already seen that you don’t necessarily make N copies of 

for loop body"

for (i=0; i<N; i++) {!
!a = b + c;!
!d = a + e;!
!f = d + i;!

}!

Thus:" Might look like this:"
# N = $2, i = $3"
"
subi $2, $2, 1"
add $4, $5, $6"
add $7, $4, $8"
add $9, $7, $10"
addi $3, $3, 1"
sub $11, $2, $3"
bneq $11, $0, loop"

"
"
# N = N -1"
# a = b + c"
# d = a + e"
# f  = d + i"
# i = i + 1"
# $11 = $3 - $2"
# if $11 != 0, loop"

You wouldn’t make multiple copies of a machine 
instruction function either..."

loop:"
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Practical Procedures"

int main(void) {!
int i;!
int j;!
!
j = power(i, 7);!
}!
!
int power(int i, int n) {!
int j, k;!
for (j=0; j<n; j++)!

k = i*i;!
return k;!
}!

For example:" Might look like this:"
i = $6"
"
addi $ 5, $0, 7"
j power"
"
...."
"
"

"
"
# arg reg. = 7"
"

add $3, $0, $0"
subi $5, $5, 1"
mult $6, $6, $6"
addi $3, $3, 1"
sub $11, $5, $3"
bneq $11, $0, loop"
add $2, $6, $0"
j call"

power:"

call:"

"
"
# data in ret. reg."
"

Advantage:  Much greater code density."
(especially valuable for library routines, etc.)"

"
"
# i in an arg reg."
"

loop:"
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Procedure calls are so common that 
there’s significant architectural support."
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!  The big picture:"
         Caller                         Callee"

! Need “jump” and “return”: "
"   jal   ProcAddr         # issued in the caller"

•  jumps to ProcAddr "
•  save the return instruction address in $31"
•  PC = JumpAddr, RF[31]=PC+4;"

"  jr  $31    ($ra)                  # last instruction in the callee"
•  jump back to the caller procedure"
•  PC = RF[31]"
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MIPS Procedure Handling"
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MIPS Registers"

Name" R#" Usage" Preserved on Call"
$zero" 0"The constant value 0" n.a."

$v0-$v1" 2-3"Values for results & expr. eval." no"
$a0-$a3" 4-7"Arguments" no"
$t0-$t7" 8-15"Temporaries" no"
$s0-$s7" 16-23"Saved" yes"
$t8-$t9" 24-25"More temporaries" no"

$gp" 28"Global pointer" yes"
$sp" 29"Stack pointer" yes"
$fp" 30"Frame pointer" yes"
$ra" 31"Return address" yes"

$at" 1"Reserved for assembler" n.a."

$k0-$k1" 26-27"Reserved for use by OS" n.a."

(and the “conventions” associated with them)"
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! What about passing parameters and return values?"
"  registers $4 - $7  ($a0-$a3) are used to pass first 4 

parameters"
"  returned values are in $2 and $3 ($v0-$v1)"

!  32x32-bit GPRs (General purpose registers)"
"  $0 = $zero "
" $2 - $3 = $v0 - $v1 (return values)"
"  $4 - $7 = $a0 - $a3 (arguments)"

"  $8 - $15 = $t0 - $t7 (temporaries)"
"  $16 - $23 = $s0 - $s7 (saved)"
"  $24 - $25 = $t8 - $t9 (more temporaries)"
"  $31 = $ra (return address)"
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... 

32 bits 

0 

PC 

MIPS Procedure Handling (cont.)"

Take away:  HW support for SW tasks."

Swap Procedure Example"
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A"
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!  More complex procedure calls"
" What if your have more than 4 arguments?"
" What if your procedure requires more registers than available?"
" What about nested procedure calls?"
" What happens to $ra if proc1 calls proc 2 which calls proc3,…"

What if ... ?"
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!  Register contents across procedure calls are designated as either 
caller or callee saved"

!  MIPS register conventions:  (although could make caller/callee do all)"
" $t*, $v*, $a*: not preserved across call "

•  caller saves them if required"
" $s*, $ra: preserved across call "

•  callee saves them if required"

More complex cases"
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Recall…"

Name" R#" Usage" Preserved on Call"
$zero" 0"The constant value 0" n.a."

$v0-$v1" 2-3"Values for results & expr. eval." no"
$a0-$a3" 4-7"Arguments" no"
$t0-$t7" 8-15"Temporaries" no"
$s0-$s7" 16-23"Saved" yes"
$t8-$t9" 24-25"More temporaries" no"

$gp" 28"Global pointer" yes"
$sp" 29"Stack pointer" yes"
$fp" 30"Frame pointer" yes"
$ra" 31"Return address" yes"

$at" 1"Reserved for assembler" n.a."

$k0-$k1" 26-27"Reserved for use by OS" n.a."

(MIPS registers and associated “conventions)"
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! Stack"
" A dedicated area of memory"
" First-In-Last-Out (FILO)"
" Used to"

# Hold values passed to a procedure as arguments"
# Save register contents when needed"
# Provide space for variables local to a procedure"

! Stack operations"
" push: place data on stack (sw in MIPS)"
" pop: remove data from stack (lw in MIPS)"

! Stack pointer"
" Stores the address of the top of the stack"
" $29 ($sp) in MIPS "

Where is all this stuff saved to?"
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Where is the stack located?"
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!  Each procedure is associated with a call frame"
!  Each frame has a frame pointer: $fp ($30)"

Argument 5 is 
in 0($fp) 

$sp 

$fp 

Snap shots of stack 
  

main 

proc1 

proc2 

proc3 

main { 
… 
   proc1 
…} 
 
proc1 { 
… 
   proc2 
…} 
 
proc2 { 
… 
   proc3 
…} 

Local 
variables 

Saved 
Registes 

($fp) 
($ra) 

… 

Argument 6 
Argument 5 

Call frames"

Because $sp can change dynamically, often easier/intuitive to reference extra arguments via 
stable $fp – although can use $sp with a little extra math"
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Procedure call essentials:  
Good Strategy"

•  Caller at call time"
–  put arguments in $a0..$a4"
–  save any caller-save temporaries"
–  jal ..., $ra"

•  Callee at entry"
–  allocate all stack space"
–  save $ra, $fp + $s0..$s7 if necessary"

•  Callee at exit"
–  restore $ra, $fp + $s0..$s7 if used"
–  deallocate all stack space"
–  put return value in $v0"

•  Caller after return"
–  retrieve return value from $v0"
–  restore any caller-save temporaries"

most of the work"

do most work at 
callee entry/exit"
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Procedure call essentials"
•  Summary"

–  Caller saves registers "
•  (outside the agreed upon convention i.e. $ax) at point of call"

–  Callee saves registers "
•  (per convention i.e. $sx) at point of entry"

–  Callee restores saved registers, and re-adjusts stack 
before return"

–  Caller restores saved registers, and re-adjusts stack 
before resuming from the call"
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Why so strict?"
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Examples:"
•  Previous Exam Questions"
•  MIPS leaf procedure"
•  Nested function calls"

–  Stack pointers and frame pointers"
•  Capstone example:"

–  Recursive Factorial!"

"

int   fact(int n)!
{!
   if (n < 1)!
      return (1);!
   else!
      return (n * fact(n-1));!
}!

B-F"


