
L07-L09 recap: Fundamental lesson(s)!
•  Over the next 3 lectures (using the MIPS ISA as context)

I’ll explain:!
–  How functions are treated and processed in assembly!
–  How system calls are enabled in assembly!
–  How exceptions are handled in assembly!

•  I’ll also explain why it’s important that register
conventions be followed!

1!

L07-L09 recap: Why it’s important…!
•  If you ever write a compiler or OS some day, you will

need to be aware of, and code for all of the issues to be
discussed over the next 3 lectures!

•  If you understand what architectural overhead may be
associated with (compiled) procedure calls, you should
be able to write much more efficient HLL code!

2!

Lecture 10  
The MIPS datapath!

Suggested reading:!
(HP Chapter 4.1—4.4)!

3! 4!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the
right application!

Writing more !
efficient code!

Multicore processors
and programming!

CSE 30321!
Goal: describe the fundamental components
required in a single core of a modern
microprocessor as well as how they interact
with each other, with main memory, and with
external storage media."

Fundamental lesson(s)!
•  Today we’ll discuss what hardware is required to

execute an instruction, as well as how to best
“organize” it.!

5!

Why it’s important…!
•  If you ever design the HW for a microprocessor, etc.

you'll need to be aware of these types of issues!

•  Understanding organization – and how it impacts the
delay of something like a memory reference - will make
you a better programmer!

!
•  It is now more and more important to design HW/SW

simultaneously!

6!

The organization of a computer!

Control"

Datapath"

Memory" Input"

Output"

Von Neumann Model: !
•  Stored-program machine instructions are represented as numbers"
•  Programs can be stored in memory to be read/written just like "
 numbers."

Processor"

Compiler"
Today"
we’ll talk"
about these"
things"

Focus of lectures 5-9"

7!

Review: Functions of Each Component!
•  Datapath: performs data manipulation operations!

–  arithmetic logic unit (ALU)!
–  floating point unit (FPU)!

•  Control: directs operation of other components!
–  finite state machines!
–  micro-programming (to be discussed)!

•  Memory: stores instructions and data!
–  random access v.s. sequential access!
–  volatile v.s. non-volatile!
–  RAMs (SRAM, DRAM), ROMs (PROM, EEPROM), disk!
–  tradeoff between speed and cost/bit!

•  Input/Output and I/O devices: interface to environment!
–  mouse, keyboard, display, device drivers!

8!

Let’s “derive” the MIPS datapath:!
•  To simplify things a bit we’ll just look at a few instructions:!

–  memory-reference: lw, sw!
–  arithmetic-logical: add, sub, and, or, slt!
–  branching: beq, j!

•  Organizational overview:!
–  fetch an instruction based on the content of PC!
–  decode the instruction!
–  fetch operands!

•  (read one or two registers)!
–  execute !

•  (effective address calculation/arithmetic-logical operations/
comparison)!

–  store result !
•  (write to memory / write to register / update PC)!

With Von Neumann, "
RISC model do similar"
things for each"
instruction "

Very common"
instructions"

A
9!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

A Single Cycle Datapath!

10!

Let’s trace a few insturctions!
add "$5, $6, $7"
sw "0($9), $10"
sub "$1, $2, $3"
lw "$11, 0($12)"

PERFORMANCE!

11!

Single-Cycle Implementation!
•  Single-cycle, fixed-length clock:!

–  CPI = 1!
–  Clock cycle = propagation delay of the longest datapath

operations among all instruction types!
–  Easy to implement!

•  How to determine cycle length?!
•  Calculate cycle time assuming negligible delays except:!

–  memory (2ns), ALU and adders (2ns), register file access (1ns)!

–  R-type: !max {mem + RF + ALU + RF, Add} ! ! != 6ns!
–  LW: !max{mem + RF + ALU + mem + RF, Add} ! != 8ns!
–  SW: !max{mem + RF + ALU + mem, Add} ! ! != 7ns!
–  BEQ: !max{mem + RF + ALU, max{Add, mem + Add}} != 5ns!

What is the CC time?!
12!

Before, spoke about “multi-cycle” datapath!

Decode

Fetch
Init

PC=0
IR=I[PC]
PC=PC+1

Load
RF[ra]=D[d]

op=0000

Store Add
RF[ra] =
 RF[rb]+ RF[rc]

D[d]=RF[ra]

op=0001 op=0010

13!

The multi-cycle approach (& benefits):!
•  Break an instruction into smaller steps !
•  Execute each step in one cycle.!
•  Execution sequence:!

–  Balance amount of work to be done!
–  Restrict each cycle to use only one major functional unit!
–  At the end of a cycle!

•  Store values for use in later cycles!
•  Introduce additional �internal��registers!

•  The advantages:!
–  Cycle time much shorter!
–  Diff. inst. take different # of cycles to complete!
–  Functional unit used more than once per instruction!

14!

MIPS multi-cycle datapath!

Note introduction of temporary storage registers"

15!

5 steps an instruction could take:!
1. Instruction Fetch (Ifetch): !

–  Fetch instruction at address ($PC) !
–  Store the instruction in register IR!
–  Increment PC!

2. Instruction Decode and Register Read (Decode):!
–  Decode the instruction type and read register!
–  Store the register contents in registers A and B!
–  Compute new PC address and store it in ALUOut!

3. Execution, Memory Address Computation, or Branch
Completion (Execute):!
–  Compute memory address (for LW and SW), or!
–  Perform R-type operation (for R-type instruction), or!
–  Update PC (for Branch and Jump)!
–  Store memory address or register operation result in ALUOut!

16!

4. Memory Access or R-type instruction completion !
!(MemRead/RegWrite/MemWrite):!

–  Read memory at address ALUOut and store it in MDR!
–  Write ALUOut content into register file, or!
–  Write memory at address ALUOut with the value in B!

5. Write-back step (WrBack):!
–  Write the memory content read into register file!

Number of cycles for an instruction:!
–  R-type: 4!
–  lw: 5!
–  sw: 4!
–  Branch or Jump: 3

5 steps an instruction could take:!

17!

Instruction execution (summary):!

Step name

Action for R-type

instructions

Action for memory-reference

instructions

Action for

branches

Action for

jumps

Instruction fetch IR = Mem[PC],

PC = PC + 4

Instruction A =RF [IR[25:21]],

decode/register fetch B = RF [IR[20:16]],

ALUOut = PC + (sign-extend (IR[1:-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A =B) then PC = PC [31:28] |
computation, branch/ (IR[15:0]) PC = ALUOut (IR[25:0]<<2)
jump completion

Memory access or R-type RF [IR[15:11]] = Load: MDR = Mem[ALUOut]

completion ALUOut or
Store: Mem[ALUOut]= B

Memory read completion Load: RF[IR[20:16]] = MDR

18!

Some questions:!
•  How many cycles will it take to execute this code? !
 ! ! !lw $t2, 0($t3)  

! ! !lw $t3, 4($t3)  
! ! !beq $t2, $t3, Label #assume branch is not taken 
! ! !add $t5, $t2, $t3  
! ! !sw $t5, 8($t3) 
Label: !...!

 !5+5+3+4+4=21!
•  What is being done during the 8th cycle of execution?!

 ! !Compute memory address: 4 + content of $t3!

•  In what cycle does the addition of $t2 and $t3 takes place?
! !16 !!

•  How would performance compare if multi-cycle clock
period is 2 ns and cycle cycle period is 10 ns?!
! !(21 CCs x 2 ns) vs. (5 CCs x 10 ns):! !42 ns vs. 50 ns !!

19!

Foreshadowing: pipelines!

20!

Data must be stored from one stage to the next in pipeline registers/latches.!
hold temporary values between clocks and needed info. for execution.!

Note: Some extra HW needed.!

21!

Another way to look at it…!

Inst. #! 1! 2! 3! 4! 5! 6! 7! 8!

Inst. i! IF! ID! EX! MEM! WB!

Inst. i+1! IF! ID! EX! MEM! WB!

Inst. i+2! IF! ID! EX! MEM! WB!

Inst. i+3! IF! ID! EX! MEM! WB!

Clock Number!

AL
U!

Reg!IM! DM! Reg!

AL
U!

Reg!IM! DM! Reg!

AL
U!

Reg!IM! DM! Reg!

AL
U!

Reg!IM! DM! Reg!

Pr
og

ra
m

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)!

Time!

A SHORT DISCUSSION ABOUT
CONTROL LOGIC!

(Tying computer architecture to logic design…)!

22!

The HW needed, plus control!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

When we talk about control,"
we talk about these blocks"

Single cycle
MIPS machine"

23!

Single cycle control: inputs & outputs!
Control Inputs:!

–  Opcode (6 bits)!
–  How about R-type instructions?!

Control Outputs:!
–  RegDst!
–  ALUSrc!
–  MemtoReg!
–  RegWrite!
–  MemRead!
–  MemWrite!
–  Branch!
–  Jump!
–  ALUctr!

Step 1:!
Identify inputs &
outputs"

columns!

rows! Step 2:!
Make a control signal"
table for each cycle"

24!

Control Signal Table!

Add! Sub! LW! SW! BEQ!
Func (input)! 100000! 100010! xxxxxx! xxxxxx! xxxxxx!
Op (input)! 000000! 000000! 100011! 101011! 000100!
RegDst! 1! 1! 0! X! X!
ALUSrc! 0! 0! 1! 1! 0!
Mem-to-Reg! 0! 0! 1! X! X!
Reg. Write! 1! 1! 1! 0! 0!
Mem. Read! 0! 0! 1! 0! 0!
Mem. Write! 0! 0! 0! 1! 0!
Branch! 0! 0! 0! 0! 1!
ALUOp! Add! Sub! 00! 00! 01!

R-type!

(outputs)!

(inputs)!

25!

The HW needed, plus control!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

For MIPS, we have to"
build a Main Control Block"
and an ALU Control Block"

Single cycle
MIPS machine"

26!

Main control, ALU control!

•  Use OP field to generate ALUOp (encoding)!
– Control signal fed to ALU control block!

•  Use Func field and ALUOp to generate ALUctr
(decoding)!
– Specifically sets 3 ALU control signals!

•  B-Invert, Carry-in, operation!

Main!
Control"

ALU!
Control"

ALU"

ALUOp"

Func!
OP! ALUctr!

6"
6"

2"
3"

(opcode)!

Our 2 blocks!
of control logic!

Other control"
signals"

27!

Main control, ALU control!

R-type! lw! sw! beq!

ALU Operation! �R-type�! add! add! subtract!

ALUOp<1:0>! 10! 00! 00! 01!

Main!
Control"

ALU!
Control"ALUOp"

Func!
OP! ALUctr!

6"

6"

2"
3"

Or in other words…!
00 = ALU performs add!
01 = ALU performs sub!
10 = ALU does what function code says!

Outputs of main control,!
become inputs to ALU control!

We have 8 bits"
of input to our ALU control"
block; we need 3 bits of"
output…"

ALU"

28!

•  We want these outputs:!

ALUctr<2> = B-negate (C-in & B-invert)"
ALUctr<1> = Select ALU Output"
ALUctr<0> = Select ALU Output"

ALU Operation! and! or! add! sub! slt!
ALUctr<2:0>! 000! 001! 010! 110! 111! mux!

 and - 00!

 or - 01!

adder - 10!

less - 11!Invert B and C-in must be
a 1 for subtract"

Generating ALUctr!

36 (and) != 1 0 0 1 0 0!
37 (or) != 1 0 0 1 0 1!
32 (add) != 1 0 0 0 0 0!
34 (sub) != 1 0 0 0 1 0!
42 (slt) != 1 0 1 0 1 0!

can ignore these bits!
(they�re the same for all…)!

func<5:0>!

•  We have these inputs…!
ALUOp" Funct field" ALUctr"

ALUOp1" ALUOp0" F5" F4" F3"F2" F1" F0"
0" 0" X" X" X" X" X" X"
0" 1" X" X" X" X" X" X"
1" X" X" X" 0" 0" 0" 0"
1" X" X" X" 0" 0" 1" 0"
1" X" X" X" 0" 1" 0" 0"
1" X" X" X" 0" 1" 0" 1"
1" X" X" X" 1" 0" 1" 0"

Inputs"

lw/sw!
beq!

R-type!

010 (add)!
110 (sub)!
010 (add)!
110 (sub)!
000 (and)!
001 (or)!
111 (slt)!

Outputs"

29"

The logic:!

Ex: ALUctr<2>
(SUB/BEQ)

or
and

or

and or

(func<5:0>)

F0

F1

F2

F3

(ALUOp)
ALUOp0

ALUctr<2>

ALUctr<1>

ALUctr<0>

ALUctr

ALUOp1

Could generate gates by
hand, often done w/SW."

This table is used to generate the
actual Boolean logic gates that
produce ALUctr."

1/0
X/1

0/X

0/X

1/X

0/X 0/X 0/0

1/0 1/1

1/1

0/0

110/110

ALUOp" Funct field" ALUctr"
ALUOp1" ALUOp0" F5" F4" F3"F2" F1" F0"

0" 0" X" X" X" X" X" X"
0" 1" X" X" X" X" X" X"
1" X" X" X" 0" 0" 0" 0"
1" X" X" X" 0" 0" 1" 0"
1" X" X" X" 0" 1" 0" 0"
1" X" X" X" 0" 1" 0" 1"
1" X" X" X" 1" 0" 1" 0"

Inputs"

lw/sw!
beq!

R-type!

010 (add)!
110 (sub)!
010 (add)!
110 (sub)!
000 (and)!
001 (or)!
111 (slt)!

Outputs"

30!

The HW needed, plus control!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

For MIPS, we have to"
build a Main Control Block"
and an ALU Control Block"

Single cycle
MIPS machine"

31!

Well, here�s what we did…!

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

or
and

or

and
or

(func<5:0>)

F0

F1

F2

F3

(ALUOp)
ALUOp0

ALUctr<2>

ALUctr<1>

ALUctr<0>

ALUctr

ALUOp1

We came up with the
information to generate
this logic which would fit
here in the datapath."

Single cycle
MIPS machine"

32!

33!

Controller FSM for 6-instruction processor!

Fetch

Decode

Init
PC_clr=1

Store

I _rd=1
PC_inc=1
I R_ld=1

Load Add
D_addr=d
D_wr=1
RF_s1 = X
RF_s0 = X
RF_Rp_addr=ra
RF_Rp_rd=1

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1 = 0
RF_s0 = 0
RF_Rq_add=rc
RF_Rq_rd=1
RF_W_addr_ra
RF_W_wr=1
alu_s1 = 0
alu_s0 = 1

D_addr=d
D_rd=1
RF_s1 = 0
R F _ s0 = 1
RF_W_addr=ra
RF_W_wr=1

Subtract Load-
constant Jump-if-zero

RF_Rp_addr=rb
RF_Rp_rd=1
RF_s1=0
RF_s0=0
RF_Rq_addr=rc
RF_Rq_rd=1
RF_W_addr=ra
RF_W_wr=1
alu_s1=1
alu_s0=0

RF_Rp_addr=ra
RF_Rp_rd=1 RF_s1=1

RF_s0=0
RF_W_addr=ra
RF_W_wr=1

Jump-if-
zero-jmp
PC_ld=1

op=0100 op=0101 op=0010 op=0011 op=0001 op=0000

RF
_R

p_
ze

ro

RF
_R

p_
ze

ro
'

Recall:!
•  With multi-cycle, need to generate control signals at right time"
•  Captured by FSM"
•  Each level analogous to 1 CC"
"

MIPS FSM diagram!

X.S. Hu 5-25

Finite State Diagram

t

i

P C W r i t e
P C S o u r c e = 1 0

A L U S r c A = 1
A L U S r c B = 0 0
A L U O p = 0 1
P C W r t e C o n d

P C S o u r c e = 0 1

A L U S r c A = 1
A L U S r c B = 0 0
A L U O p = 1 0

R e g D s t = 1
R e g W r i t e

M e m t o R e g = 0

M e m W r i t e
I o r D = 1

M e m R e a d
I o r D = 1

R e g D s t = 0
R e g W r i t e

M e m t o R e g = 1

A L U S r c A = 0
A L U S r c B = 1 1
A L U O p = 0 0

M e m R e a d
A L U S r c A = 0

I o r D = 0
I R W r i t e

A L U S r c B = 0 1
A L U O p = 0 0

P C W r t e
P C S o u r c e = 0 0

I n s t r u c t i o n f e t c h
I n s t r u c t i o n d e c o d e /

r e g i s t e r f e tc h

J u m p
c o m p l e t o n

B r a n c h
c o m p l e t i o n

E x e c u t o n

R - t y p e c o m p l e t o n

W r t e - b a c k s t e p

(O
 p
 =

 J
 ')

4

0
1

9 8 6

A L U S r c A = 1
A L U S r c B = 1 0
A L U O p = 0 0

M e m o r y a d d r e s s
c o m p u t a t i o n

M e m o r y
a c c e s s (O

 p
 =

 ' L
 W

 ')

2

M e m o r y
a c c e s s

7
5 3

S t a r t

Cycle 1"

Cycle 2"

Cycle 3"

Cycle 4"

Cycle 5" 34!

P"C"W"r"i"t"e"
P"C"W"r"i"t"e"C"o"n"d"
I"o"r"D"

M"e"m"t"o"R"e"g"
P"C"S"o"u"r"c"e"
A"L"U"O"p"
A"L"U"S"r"c"B"
A"L"U"S"r"c"A"
R"e"g"W"r"i"t"e"
R"e"g"D"s"t"

O
" p"5
"

O
"p" 4
"

O
" p"3
"

O
" p"2
"

O
"p"1
"

O
"p" 0
"

I"R"W"r"i"t"e"

M"e"m"R"e"a"d"
M"e"m"W"r"i"t"e"

N"S"3"
N"S"2"
N"S"1"
N"S"0"

S"3
"

S"2
"

S"1
"

S"0
"

S"t"a"t"e" "r"e"g"i"s"t"e"r"

Control Logic (in ROM)!

Output!

Input!

Instruction Register!
Opcode Field!

X.S. Hu 5-25

Finite State Diagram

t

i

P C W r i t e
P C S o u r c e = 1 0

A L U S r c A = 1
A L U S r c B = 0 0
A L U O p = 0 1
P C W r t e C o n d

P C S o u r c e = 0 1

A L U S r c A = 1
A L U S r c B = 0 0
A L U O p = 1 0

R e g D s t = 1
R e g W r i t e

M e m t o R e g = 0

M e m W r i t e
I o r D = 1

M e m R e a d
I o r D = 1

R e g D s t = 0
R e g W r i t e

M e m t o R e g = 1

A L U S r c A = 0
A L U S r c B = 1 1
A L U O p = 0 0

M e m R e a d
A L U S r c A = 0

I o r D = 0
I R W r i t e

A L U S r c B = 0 1
A L U O p = 0 0

P C W r t e
P C S o u r c e = 0 0

I n s t r u c t i o n f e t c h
I n s t r u c t i o n d e c o d e /

r e g i s t e r f e tc h

J u m p
c o m p l e t o n

B r a n c h
c o m p l e t i o n

E x e c u t o n

R - t y p e c o m p l e t o n

W r t e - b a c k s t e p

(O
 p
 =

 J
 ')

4

0
1

9 8 6

A L U S r c A = 1
A L U S r c B = 1 0
A L U O p = 0 0

M e m o r y a d d r e s s
c o m p u t a t i o n

M e m o r y
a c c e s s (O

 p
 =

 ' L
 W

 ')

2

M e m o r y
a c c e s s

7
5 3

S t a r t

Might also store control signals in ROM!

35!

•  Exceptions: unexpected events from within the processor!
–  arithmetic overflow!
–  undefined instruction!
–  switching from user program to OS!

•  Interrupts: unexpected events from outside of the processor!
–  I/O request!

•  Consequence: alter the normal flow of instruction execution !
•  Key issues:!

–  detection!
–  action!

•  save the address of the offending instruction in the EPC!
•  transfer control to OS at some specified address!

•  Exception type indication:!
–  status register!
–  interrupt vector!

Another reason that register
naming conventions are
important.!

Exceptions!

36!

FSM with
Exception
Handling!

37!

Datapath with Exception Handling!

38!

