
CSE 30321 – Lecture 10-11 – In Class Example Handout 
 
Question 1: 
First, we briefly review the notion of a clock cycle (CC).  Generally speaking a CC is the amount of time 
required for (i) a set of inputs to propagate through some combinational logic and (ii) for the output of 
that combinational logic to be latched in registers.  (The inputs to the combinational logic would usually 
come from registers too.)   
 
Thus, for the MIPS, single cycle datapath derived in class last week, the “combinational logic” referred 
to above would really be the instruction memory, register file, ALU, data memory, and register file.  
The inputs come from instruction memory and the output might be the main register file (in the case of 
an ALU instruction) or the PC (in the case of a branch instruction). 
 
Putting the MIPS datapath aside, its generally a good idea to minimize the logic on the critical path 
between two registers – as this will help shorted the required clock cycle time, will result in an increase 
in clock rate, which generally means better “performance”. 
 
To be more quantitative, hypothetically, let’s say that there are two gate mappings that can implement 
the logic function that we need to evaluate.  The inputs to these gates would come from 1 set of 
registers, and the outputs from these gates would be stored in another set of registers.  The 
composition of each is specified in the table below: 
 

  AND gates NOR gates XOR gates 
Design 1 7 17 13 
Design 2 24 4 7 

 
Furthermore, the delay associated with each gate is also listed below: 
 

AND gate NOR gate XOR gate 
2 picoseconds* 1 picosecond 3 picoseconds 

 
Which design will lead to the shorted CC time? 
 
Design 1:  = (7 ANDs * 2 ps/AND) + (17 NORs * 1 ps/NOR) + (13 XORs * 3 ps/XOR) 
  = 14 ps + 17 ps + 39 ps = 70 ps 
 
Design 2:  = (24 ANDs * 2 ps/AND) + (4 NORs * 1 ps/NOR) + (7 XORs * 3 ps/XOR) 
  = 48 ps + 4 ps + 21 ps = 73 ps 
 
What is the clock rate for that design (in GHz)? 
 

- Clock rate = 1 / CC 
- Clock rate = 1 / 140 ps 
- Clock rate = 1 / (140*10-12) 
- Clock rate = 7.14 x 1011 Hz 
- Clock rate = 7.14 x 1011 Hz * (1 GHz / 109 Hz) 
- Clock rate = 7.14 GHz 

 
Take Away:  The longest critical path determines the clock cycle time 
 



Question 2: 
In class last week, you derived the single cycle datapath for the MIPS ISA.  A block diagram is shown 
below: 
 

 
Assume that the following latencies would be associated with the datapath above: 
 

Operation Time 
Get instruction encoding – Mem(PC) 2 ns 

Get data from register file 2 ns 
Perform operation on data in registers 3 ns 

Increment PC by 4 1 ns 
Change PC depending on conditional 

instruction 1 ns 

Access data memory 2 ns 
Write data back to the register file 
(from the ALU or from memory) 2 ns 
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Questions: 
(a) What type/class of instruction in the MIPS ISA will set CC time (and hence clock rate)?  (e.g. 

ALU type, conditional branch, load, store, etc.) 
(b) Given the latencies in the above table, what would the clock rate be for our single cycle 

datapath?   
 
Note:  for both (a) and (b), pay particularly close attention to the diagram shown above and try to define 
the critical path. 
 
Answers: 
 
First, the load instruction sets the critical path.  For the load, we must: 

- Get the instruction encoding from memory 
- Read data from the register file 
- Perform an ALU operation 
- Access data memory 
- Write data back to the register file 

 
Note that we can ignore the overhead associated with PC  PC + 4 b/c this would happen in parallel 
with operations 
 
 
 
Second, the clock rate would just be the inverse of the some of the delays: 

- (2 ns + 2 ns + 3 ns + 2 ns + 2 ns) 
- 11 ns 
- 1 / 11 ns = 91 MHz / 2  45.5 MHz 

 
 
 
Take Away:   

- In a single cycle implementation, the instruction with the longest critical path sets the clock rate 
for EVERY instruction. 

- Think about Amdahl’s Law – this is good if we can improve something that we use often… 
o …but here, we’re sort of making a lot of things worse! 
o (How worse?  We’ll see next.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Question 3: 
Let’s look at the impact of the load instruction’s domination of the CC time a bit more: 
 
Recall, that a load (lw) needs to do the following: 

a) Get Memory(PC) 
b) Read data from the register file and “sign extend” an immediate value 
c) Calculate an address 
d) Get data from Memory(Address) 
e) Write data back to the register file 

 
With this design, let’s assume that each step takes the amount of time listed in the table 
 

(a) (b) (c) (d) (e) 
4 ns 2 ns 2 ns 4 ns 2 ns 

 
(for simpler math) 
 
Part 1: 
With these numbers, what is the CC time? 
 
A: 14 ns x 2 = 28 ns 
 

- However, store (sw) instruction only needs to do steps A, B, C, and D 
o Therefore a store only really needs 12 (24) ns 

- Similarly, add instruction only needs to do steps A, B, C, and E 
o Therefore could do an add in 10 (20) ns 

- Still, with single CC design, both of the above instructions take 28 ns. 
 
Take away: Our CC time is limited by the longest instruction. 
 
Part 2: 
Let’s quantify performance hit that we’re taking – and assume that we could somehow execute each 
instruction in the amount of time that it actually takes: 
 
Assume the following: 
 
ALU lw sw Branch / jump 
45 % 20 % 15 % 20 % 

 
Per the previous discussion, we can assume that ALU instructions take 10 (20) ns, lw’s take 14 (28) ns, 
and sw’s take 12 (24) ns.  We can also estimate how long it takes to do a branch/jump: 

- Assume that steps A, B, C, and E are needed 
o (A) Fetch, (B) Read data to compare, (C) Subtract to do comparison, (D) Update PC (like 

a register write back) 
 
CPU time    =  (instruction / program) x (seconds / instruction) 
CPU time (single CC)   =  i x 28 ns       = 28(i) 
CPU time (variable CC) = i x [(.45 x 20) + (.2 x 28) + (.15 x 24) + (.2 x 20)]  = 22.2(i) 
Potential performance gain =  28(i) / 22.2(i) = 26% 
 
Take away: By using a single, long CC, we’re losing performance. 



Part 3: 
Unfortunately, such a “variable CC” is not practical to implement…   however, there is a way to get 
some of the above performance back. 
 

- To make this solution work, want to balance the amount of work done per step.  Why? 
o Because if every step has to take the same amount of time – i.e. if we have 2, 2, 2, 2, 

and 4 ns, we’re still at 4! 
 
As an example, let’s see what happens if we can make each step take 3 ns: 
 
CPU time (3 ns delay, multi-cycle) = (i) x (CC / instruction) x (s / CC) 
      = (i) x [(.45 x 4) + (.2 x 5) + (.15 x 4) + (.20 x 3)] x 6 ns CC 
      = 24(i) 
 
24(i) is not as good as 22.2(i), but its better than 28!   get speedup of 17% instead of 26% 
 
Now, we have a shorter clock rate and each instruction takes an integer number of CCs. 
  
Take away: There is a “catch” to this approach.  We have to store the intermediate results.   
   Remember, a CC is defined as the time some logic was evaluated and the result was  
   latched…. and that inputs often come from another, previous latch. 
 
   Realistically, the latching time of the intermediate registers will add a nominal overhead 
   to each stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Question 4:  (adding a new instruction) 
Referring to the extra handouts, modify the multi-cycle datapath shown below to support a new 
instruction:  load++ $x n($y). 
 
The RTL for load ++ is as follows: 
 $x  Mem(n + RF($y)) 
 $y  $y + 4 
 
Show any necessary changes to the FSM as well. 
 
Part A: 
Describe – cycle-by-cycle (starting with Fetch) – what this instruction needs to do: 
 
Item 1:  Recap of LW + new functionality. 
Remember what the base load does… 

- lw <destination register>, offset(<register with value used to calculate address sent to memory>) 
- Address sent to memory = offset + data in <register value used to calculated address…> 
- Data in destination register = data at address calculated above 

 
Now:  ALSO, add 4 to <register with value used to calculate address…> 
 
Item 2:  Review RTL, discuss different options for solving problem. 
 

- Fetch: 
o IR  Mem(PC)      Same for every instruction. 
o PC  PC +4 

- Decode: 
o A  RF(IR[25:21])      Same for every instruction. 
o B  RF(IR[20:16]) 
o ALUOut  PC + (sign-extend (IR[15:0] << 2) 

 
 Item 2a:  Digression – have assumed BEQ = 3 CCs (see Lecture 09 slide) 

 Why is ALUOut line here… 
 For BEQ to be done in 3 CCs, need to calculate address in CC #2 
 Otherwise, would do comparison and address calculation in CC #3 and would 

need antoher ALU 
 By doing this in CC #2, we can re-use the ALU … and it does no harm 
 Strategy:  do something ASAP if HW is available and idle  

 
Item 2b:  Back to lw++  

- Execute: 
o ALUOut = A + sign-extend(IR[15:0]) 

- Memory: 
o MDR  Mem[ALUOut] 
o  
o Question:  Can we update the $y register here? 

 Yes! 
 The ALU is idle for all intent and purposes 
 Therefore, can also do:  $y  $y + 4 

- Write Back: 
o RF(IR[20:16])  MDR  # Just do normal lw first (i.e. write data back to register) 



 
o Question:  Can we also update $y here?  Actually, there are 2 answers… 

 
 Option A:  Yes… but we need to add more HW… 

• (Namely another path to write data to the register file is needed…) 
• See datapath on overheard; we’ll draw in Part B. 
 

 Option B:  No… we need to add another state… 
• Look at mux … you can only select the MDR or ALUOut … not both! 
• Begs another question… how do you modify the FSM? 

o Add state coming off of State 4.  This would allow us to handle the 
load++ case.  There would then be a path back to fetch 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part B: 
Given your answer to Part A, how would you modify the datapath or state diagram? 
 
SEE POWERPOINT NOTES. 


