
L10-11 Recap: fundamental lesson(s)!
•  We discussed what hardware is required to execute an

instruction, as well as how to best “organize” it.!

1!

L10-11 Recap: why it’s important…!
•  If you ever design the HW for a microprocessor, etc.

you'll need to be aware of these types of issues!
–  Much more detail in Computer Architecture II!

•  Understanding organization – and how it impacts the
delay of something like a memory reference – will make
you a better programmer!
–  This will become very clear after the midterm!

!
•  It is now more and more important to design HW/SW

simultaneously!

2!

Lecture 12-13: Pipelines!

Suggested reading:!
(HP Chapter 4.5—4.7)!

3! 4!

Processor components!

vs.!

Processor comparison!

HLL code translation!The right HW for the
right application!

Writing more !
efficient code!

Multicore processors
and programming!

CSE 30321!
Goal: describe the fundamental components
required in a single core of a modern
microprocessor as well as how they interact
with each other, with main memory, and with
external storage media."

Fundamental lesson(s)!
•  In this lecture, we consider how we can improve

performance via higher throughput!

–  A classic example is the assembly line !

–  If a task as a whole is slow, if it can be broken up into
smaller parts – each taking τ seconds!

–  The time per task approaches τ – after the pipeline is filled!

5!

Why it’s important…!
•  Without pipelining, the effective time to do nearly any

information processing task would be 5-20 times
longer…!

6!

Example: We want to build N cars…!

7!

...Each car takes 6 steps to build...!
Build the frame"

(~1 hour)"
Build the body"
(~1.25 hours)"

Install interior"
(~1.25 hours)"

Put on axles, wheels"
(~1 hour)"

Paint"
(~1.5 hours)"

Roll out"
(~1 hours)"

Sequential Car Building... (a lot like multi-cycle)!

8!

Build the frame"
(~ 1 hour)"

Build the body"
(~1.25 hours)"

Install interior"
(~1.25 hours)"

Put on axles, wheels"
(~1 hour)"

Paint"
(~1.5 hours)" Roll out (~1 hours)"

Total time: 7 Hours.!
(~1 hour/stage)"

Pipelined Car Building...!

1 car done ~ every 1.5
hours!

(like multi-cycle, limited by time of
the longest stage)"

9!

Pipelining Lessons (laundry example)!

•  Multiple tasks operating
simultaneously!

•  Pipelining doesn’t help
latency of single task, it
helps throughput of entire
workload!

•  Pipeline rate limited by
slowest pipeline stage!

•  Potential speedup =
Number pipe stages!

•  Unbalanced lengths of
pipe stages reduces
speedup!

•  Also, need time to “fill”
and “drain” the pipeline.!

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

10!

Pipelining: Some terms!
•  If you’re doing laundry or implementing a µP, each

stage where something is done called a pipe stage!

–  In laundry example, washer, dryer, and folding table are
pipe stages; clothes enter at one end, exit other!

–  In a µP, instructions enter at one end and have been
executed when they leave!

!
•  Throughput is how often stuff comes out of a pipeline!

11!

On the board…!
•  The “math” behind pipelining…!

A!

12!

More detail…!
•  Book’s approach to draw pipeline timing diagrams…!

–  Time runs left-to-right, in units of stage time!
–  Each “row” below corresponds to distinct initiation!
–  Boundary between 2 column entries: pipeline register !

•  (i.e. laundry basket)!
–  Look at columns to see what stage is doing what!

0! 1! 2! 3! 4! 5! 6!

Wash 1! Dry 1! Fold 1! Pack 1!

Wash 2! Dry 2! Fold 2! Pack 2!

Wash 3! Dry 3! Fold 3! Pack 3!

Wash 4! Dry 4! Fold 4! Pack 4!

Wash 5! Dry 5! Fold 5!

Wash 6! Dry 6!

Time for N initiations to complete: !NT + (S-1)T!
Throughput: ! ! ! !Time per initiation = T + (S-1)T/N ! T!!

The “new look” dataflow!

13!

Data must be stored from one stage to the next in pipeline registers/latches.!
Pipeline latch – to – pipeline latch time is one clock cycle!

Note: Some extra HW needed.!

14!

Another way to look at it…!

Inst. #! 1! 2! 3! 4! 5! 6! 7! 8!

Inst. i! IF! ID! EX! MEM! WB!

Inst. i+1! IF! ID! EX! MEM! WB!

Inst. i+2! IF! ID! EX! MEM! WB!

Inst. i+3! IF! ID! EX! MEM! WB!

Clock Number!

AL
U!

Reg!IM! DM! Reg!

AL
U!

Reg!IM! DM! Reg!

AL
U!

Reg!IM! DM! Reg!

AL
U!

Reg!IM! DM! Reg!

Pr
og

ra
m

 e
xe

cu
tio

n
or

de
r (

in
 in

st
ru

ct
io

ns
)!

Time!

Impact on instruction execution!
•  In each cycle, new instruction fetched and begins 5

cycle execution!

•  In perfect world (pipeline) performance improved 5
times over!!

•  Now, let’s talk about overhead… !
–  Must know what’s going on in every cycle of machine!
–  What if 2 instructions need same resource at same time? !

•  (LOTS more on this later)!
•  Separate instruction/data memories, multiple register ports,

etc. help avoid this!

15!

A preliminary example:!
•  Following charts describe 3 scenarios:!

–  Processing of load word (lw) instruction!
•  Bug included in design (make SURE you understand the bug)!

–  Processing of lw!
•  Bug corrected (make SURE you understand the fix)!

–  Processing of lw followed in pipeline by sub!
•  (Sets the stage for discussion of HAZARDS and inter-

instruction dependencies)!

16!

17!

Load word: Cycle 1!

18!

Load Word: Cycle 2!

19!

Load Word: Cycle 3!

20!

Load Word: Cycle 4!

21!

Load Word: Cycle 5!

22!

Load Word: Fixed Bug!

23!

A 2 instruction sequence!
•  Examine multiple-cycle & single-cycle diagrams for a

sequence of 2 independent instructions!
–  (i.e. no common registers b/t them)!

•  lw !$10, 9($1)!
•  sub!$11, $2, $3!

24!

Single-cycle diagrams: cycle 1!

25!

Single-cycle diagrams: cycle 2!

26!

Single-cycle diagrams: cycle 3!

27!

Single-cycle diagrams: cycle 4!

28!

Single-cycle diagrams: cycle 5!

29!

Single-cycle diagrams: cycle 6!

WHAT ABOUT CONTROL
SIGNALS?!

30!

31!

Questions about control signals!
•  Following discussion relevant to a single instruction!

•  Q: Are all control signals active at the same time?!
•  A: !?!

•  Q: Can we generate all these signals at the same time?!
•  A: !?!

32!

Passing control w/pipe registers!
•  Analogy: send instruction with car on assembly line!

–  “Install Corinthian leather interior on car 6 @ stage 3”!

33!

Pipelined datapath w/control signals!

HAZARDS!

34!

35!

On the board…!
•  Let’s look at hazards…!

–  …and how they (generally) impact performance.!

B!

36!

Pipelining hazards!
•  Pipeline hazards prevent next instruction from

executing during designated clock cycle!

•  There are 3 classes of hazards:!
–  Structural Hazards:!

•  Arise from resource conflicts !
•  HW cannot support all possible combinations of instructions!

–  Data Hazards:!
•  Occur when given instruction depends on data from an

instruction ahead of it in pipeline!
–  Control Hazards:!

•  Result from branch, other instructions that change flow of
program (i.e. change PC)!

How do we deal with hazards?!
•  Often, pipeline must be stalled!
•  Stalling pipeline usually lets some instruction(s) in

pipeline proceed, another/others wait for data, resource,
etc.!

•  A note on terminology:!
–  If we say an instruction was “issued later than instruction

x”, we mean that it was issued after instruction x and is
not as far along in the pipeline!

–  If we say an instruction was “issued earlier than
instruction x”, we mean that it was issued before
instruction x and is further along in the pipeline!

37!

Stalls and performance!
•  Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle!

•  Pipelining can be viewed to:!
–  Decrease CPI or clock cycle time for instruction!
–  Let’s see what affect stalls have on CPI…!

•  CPI pipelined =!
–  Ideal CPI + Pipeline stall cycles per instruction!
–  1 + Pipeline stall cycles per instruction!

38!

Stalls and performance!
•  Ignoring overhead and assuming stages are balanced:!

•  If no stalls, speedup equal to # of pipeline stages in
ideal case!

39!

Structural hazards!
•  Avoid structural hazards by duplicating resources!

–  e.g. an ALU to perform an arithmetic operation and an
adder to increment PC!

•  If not all possible combinations of instructions can be
executed, structural hazards occur!

!
•  Pipelines stall result of hazards, CPI increased from the

usual “1”!

40!

41!

An example of a structural hazard!

AL
U!

Reg!Mem! DM! Reg!

AL
U!

Reg!Mem! DM! Reg!

AL
U!

Reg!Mem! DM! Reg!

AL
U!

Reg!Mem! DM! Reg!

Time!

AL
U!

Reg!Mem! DM! Reg!

Load!

Instruction 1!

Instruction 2!

Instruction 3!

Instruction 4!

What’s the problem here?"

42!

How is it resolved?!

Time!

AL
U!

Reg!Mem! DM! Reg!

Load!

Instruction 1!

Instruction 2!

Stall!

Instruction 3!

Bubble" Bubble" Bubble" Bubble" Bubble"

Pipeline generally stalled by "
inserting a “bubble” or NOP"

AL
U!

Reg!Mem! DM! Reg!

AL
U!

Reg!Mem! DM! Reg!

AL
U!

Reg!Mem! DM! Reg!

43!

Or alternatively…!

Inst. #! 1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

LOAD! IF! ID! EX! MEM! WB!

Inst. i+1! IF! ID! EX! MEM! WB!

Inst. i+2! IF! ID! EX! MEM! WB!

Inst. i+3! stall! IF! ID! EX! MEM! WB!

Inst. i+4! IF! ID! EX! MEM! WB!

Inst. i+5! IF! ID! EX! MEM!

Inst. i+6! IF! ID! EX!

Clock Number!

•  LOAD instruction “steals” an instruction fetch cycle which will
cause the pipeline to stall."

•  Thus, no instruction completes on clock cycle 8"

Remember the common case!!
•  A machine without structural hazards will always have a

lower CPI.!

•  But, in some cases it may be better to allow them than
to eliminate them.!

•  Consider the following:!
–  Is pipelining functional units or duplicating them costly in

terms of HW?!
–  Does structural hazard occur often?!
–  What’s the common case?!

44!

45!

What’s the realistic solution?!
•  Answer: Add more hardware.!

–  (especially for the memory access example!)!
•  CPI degrades quickly from our ideal ‘1’ for even the simplest

of cases…!

