
Lecture 13-14:  
Pipelines Hazards"

Suggested reading:"
(HP Chapter 4.5—4.7)"

1" 2"

Processor components"

vs."

Processor comparison"

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"

Fundamental lesson(s)"
•  Pipelining changes the timing as to when the result(s)

of an instruction are produced"

•  Additional HW is needed to ensure that the correct
program results are produced while maintaining the
speedups offered from the introduction of pipelining"

•  We must also account for the efficient pipelining of
control instructions (e.g. beq) to preserve performance
gains and program correctness"

3"

Why it’s important…"
•  If you're a hardware designer OR a complier writer, you

need to be aware of how HLL is mapped to assembly
instructions AND what HW is used to execute a
sequence of assembly instructions"

•  Otherwise, it is quite possible to always have built in
inefficiencies"

4"

5"

On the board…"
•  Let’s look at hazards…"

–  …and how they (generally) impact performance."

B – from L12 handout"

6"

Pipelining hazards"
•  Pipeline hazards prevent next instruction from

executing during designated clock cycle"

•  There are 3 classes of hazards:"
–  Structural Hazards:"

•  Arise from resource conflicts "
•  HW cannot support all possible combinations of instructions"

–  Data Hazards:"
•  Occur when given instruction depends on data from an

instruction ahead of it in pipeline"
–  Control Hazards:"

•  Result from branch, other instructions that change flow of
program (i.e. change PC)"

How do we deal with hazards?"
•  Often, pipeline must be stalled"
•  Stalling pipeline usually lets some instruction(s) in

pipeline proceed, another/others wait for data, resource,
etc."

•  A note on terminology:"
–  If we say an instruction was “issued later than instruction

x”, we mean that it was issued after instruction x and is
not as far along in the pipeline"

–  If we say an instruction was “issued earlier than
instruction x”, we mean that it was issued before
instruction x and is further along in the pipeline"

7"

Stalls and performance"
•  Stalls impede progress of a pipeline and result in

deviation from 1 instruction executing/clock cycle"

•  Pipelining can be viewed to:"
–  Decrease CPI or clock cycle time for instruction"
–  Let’s see what affect stalls have on CPI…"

•  CPI pipelined ="
–  Ideal CPI + Pipeline stall cycles per instruction"
–  1 + Pipeline stall cycles per instruction"

8"

Stalls and performance"
•  Ignoring overhead and assuming stages are balanced:"

•  If no stalls, speedup equal to # of pipeline stages in
ideal case"

9"

STRUCTURAL HAZARDS"

10"

Structural hazards"
•  Avoid structural hazards by duplicating resources"

–  e.g. an ALU to perform an arithmetic operation and an
adder to increment PC"

•  If not all possible combinations of instructions can be
executed, structural hazards occur"

"
•  Pipelines stall result of hazards, CPI increased from the

usual “1”"

11" 12"

An example of a structural hazard"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

Time"

AL
U"

Reg"Mem" DM" Reg"

Load"

Instruction 1"

Instruction 2"

Instruction 3"

Instruction 4"

What’s the problem here?"

13"

How is it resolved?"

Time"

AL
U"

Reg"Mem" DM" Reg"

Load"

Instruction 1"

Instruction 2"

Stall"

Instruction 3"

Bubble" Bubble" Bubble" Bubble" Bubble"

Pipeline generally stalled by "
inserting a “bubble” or NOP"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

14"

Or alternatively…"

Inst. #" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"

LOAD" IF" ID" EX" MEM" WB"

Inst. i+1" IF" ID" EX" MEM" WB"

Inst. i+2" IF" ID" EX" MEM" WB"

Inst. i+3" stall" IF" ID" EX" MEM" WB"

Inst. i+4" IF" ID" EX" MEM" WB"

Inst. i+5" IF" ID" EX" MEM"

Inst. i+6" IF" ID" EX"

Clock Number"

•  LOAD instruction “steals” an instruction fetch cycle which will
cause the pipeline to stall."

•  Thus, no instruction completes on clock cycle 8"

15"

What’s the realistic solution?"
•  Answer: Add more hardware."

–  (especially for the memory access example – i.e. the
common case)"

•  CPI degrades quickly from our ideal ‘1’ for even the simplest
of cases…"

DATA HAZARDS"

16"

17"

Data hazards"
•  These exist because of pipelining"

•  Why do they exist???"
–  Pipelining changes when data operands are read, written"
–  Order differs from order seen by sequentially executing

instructions on un-pipelined machine"

•  Consider this example:"
–  ADD R1, R2, R3"
–  SUB R4, R1, R5"
–  AND R6, R1, R7"
–  OR R8, R1, R9"
–  XOR R10, R1, R11"

All instructions after ADD use
result of ADD "
"
ADD writes the register in WB
but SUB needs it in ID."
"
This is a data hazard"

18"

Illustrating a data hazard"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM"

Reg"Mem"

Time"

ADD R1, R2, R3"

SUB R4, R1, R5"

AND R6, R1, R7"

OR R8, R1, R9"

XOR R10, R1, R11"

AL
U"

Reg"Mem"

ADD instruction causes a hazard in next 3 instructions "
b/c register not written until after those 3 read it."

CC 1" CC 2" CC 3" CC 4" CC 5" CC 6"

19"

Forwarding"
•  Problem illustrated on previous slide can actually be solved

relatively easily – with forwarding"
"
•  Can we move the result from EX/MEM register to the beginning of

ALU (where SUB needs it)?"
–  Yes! "
"

•  Generally speaking:"
–  Forwarding occurs when a result is passed directly to functional unit

that requires it."
–  Result goes from output of one unit to input of another"

20"

When can we forward?"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM" Reg"

AL
U"

Reg"Mem" DM"

Reg"Mem"

Time"

ADD R1, R2, R3"

SUB R4, R1, R5"

AND R6, R1, R7"

OR R8, R1, R9"

XOR R10, R1, R11"

AL
U"

Reg"Mem"

SUB gets info. "
from EX/MEM "
pipe register"
"
"
AND gets info. "
from MEM/WB "
pipe register"
"
"
OR gets info. by "
forwarding from"
register file"

Rule of thumb: "If line goes “forward” you can do forwarding. "
" " "If its drawn backward, it’s physically impossible."

21"

Forwarding doesn’t always work"

AL
U"

Reg"IM" DM" Reg"

AL
U"

Reg"IM" DM"

AL
U"

Reg"IM"

Time"

LW R1, 0(R2)"

SUB R4, R1, R5"

AND R6, R1, R7"

OR R8, R1, R9" Reg"IM"

Can’t get data to subtract b/c result needed at beginning of"
CC #4, but not produced until end of CC #4."

Load has a latency that"
forwarding can’t solve."
"
Pipeline must stall until "
hazard cleared (starting "
with instruction that "
wants to use data until "
source produces it)."

22"

The solution pictorially"

AL
U"

Reg"IM" DM" Reg"

Reg"IM"

IM"

Time"

LW R1, 0(R2)"

SUB R4, R1, R5"

AND R6, R1, R7"

OR R8, R1, R9"

Bubble"

Bubble"

Bubble"

AL
U"

Reg"

Reg"IM"

AL
U"

DM"

Insertion of bubble causes # of cycles to complete this "
sequence to grow by 1"

23"

HW Change for Forwarding"

Idea: send result just
calculated back
around to ALU inputs"

Send output of memory back to ALU too…"
24"

Data hazard specifics"
•  There are actually 3 different kinds of data hazards:"

–  Read After Write (RAW)"
–  Write After Write (WAW)"
–  Write After Read (WAR)"

"
•  With an in-order issue/in-order completion machine,

we’re not as concerned with WAW, WAR"

25"

Read after write (RAW) hazards"
•  With RAW hazard, instruction j tries to read a source

operand before instruction i writes it."

•  Thus, j would incorrectly receive old or incorrect value"

•  Graphically/Example:"

•  Can use stalling or forwarding to resolve this hazard"

… j" i" …

Instruction j is a"
read instruction"

issued after i"

Instruction i is a"
write instruction"
issued before j"

i: ADD R1, R2, R3"
j: SUB R4, R1, R6"

26"

Memory Data Hazards"
•  Seen register hazards, can also have memory hazards"

–  RAW: "
•  store R1, 0(SP) "
•  load R4, 0(SP) "

–  In simple pipeline, memory hazards are easy"
•  In order, one at a time, read & write in same stage"

–  In general though, more difficult than register hazards"

1" 2" 3" 4" 5" 6"

Store R1, 0(SP)" F" D" EX" M" WB"

Load R1, 0(SP)" F" D" EX" M" WB"

27"

Data hazards and the compiler"
•  Compiler should be able to help eliminate some stalls

caused by data hazards"

•  i.e. compiler could not generate a LOAD instruction that
is immediately followed by instruction that uses result
of LOAD’s destination register."

28"

What about control logic?"
•  For MIPS integer pipeline, all data hazards can be

checked during ID phase of pipeline"

•  If data hazard, instruction stalled before its issued"

•  Whether forwarding is needed can also be determined
at this stage, controls signals set"

•  If hazard detected, control unit of pipeline must stall
pipeline and prevent instructions in IF, ID from
advancing"

29"

Some example situations"

Situation" Example" Action"

No Dependence" LW R1, 45(R2)"
ADD R5, R6, R7"
SUB R8, R6, R7"
OR R9, R6, R7"

No hazard possible because no dependence
exists on R1 in the immediately following three
instructions."

Dependence requiring
stall"

LW R1, 45(R2)"
ADD R5, R1, R7"
SUB R8, R6, R7"
OR R9, R6, R7"

Comparators detect the use of R1 in the ADD
and stall the ADD (and SUB and OR) before the
ADD begins EX"

Dependence overcome
by forwarding"

LW R1, 45(R2)"
ADD R5, R6, R7"
SUB R8, R1, R7"
OR R9, R6, R7"

Comparators detect the use of R1 in SUB and
forward the result of LOAD to the ALU in time
for SUB to begin with EX"

Dependence with
accesses in order"

LW R1, 45(R2)"
ADD R5, R6, R7"
SUB R8, R6, R7"
OR R9, R1, R7"

No action is required because the read of R1
by OR occurs in the second half of the ID
phase, while the write of the loaded data
occurred in the first half."

30"

Detecting Data Hazards"

31"

Hazards vs. Dependencies"
•  dependence: fixed property of instruction stream "

–  (i.e., program) "

•  hazard: property of program and processor
organization "
–  implies potential for executing things in wrong order "

•  potential only exists if instructions can be simultaneously
“in-flight” "

•  property of dynamic distance between instructions vs.
pipeline depth "

•  For example, can have RAW dependence with or
without hazard "
–  depends on pipeline "

32"

Examples…"

Examples 1-3"

CONTROL HAZARDS"

33" 34"

Branch / Control Hazards"
•  So far, we’ve limited discussion of hazards to:"

–  Arithmetic/logic operations"
–  Data transfers"

•  Also need to consider hazards involving branches:"
–  Example:"

•  40: "beq "$1, $3, 28 # (28 leads to address 72)"
•  44: "and "$12, $2, $5"
•  48: "or "$13, $6, $2"
•  52: "add "$14, $2, $2"
•  72: "lw "$4, 50($7)"

•  How long will it take before the branch decision takes
effect?"
–  What happens in the meantime?"

35"

•  If branch condition true, must skip 44, 48, 52"
–  But, these have already started down the pipeline"
–  They will complete unless we do something about it"

•  How do we deal with this?"
–  We’ll consider 2 possibilities"

How branches impact pipelined instructions" Dealing w/branch hazards: always stall"
•  Branch taken"

–  Wait 3 cycles"
–  No proper instructions in the pipeline"
–  Same delay as without stalls (no time lost)"

36"

Dealing w/branch hazards: always stall"
•  Branch not taken"

–  Still must wait 3 cycles"
–  Time lost"
–  Could have spent CCs fetching, decoding next instructions"

37"

Dealing w/branch hazards"
•  On average, branches are taken ½ the time"

–  If branch not taken…"
•  Continue normal processing"

–  Else, if branch is taken…"
•  Need to flush improper instruction from pipeline"

•  One approach:"
–  Always assume branch will NOT be taken"

•  Cuts overall time for branch processing in ½ "
–  If prediction is incorrect, just flush the pipeline"

38"

Impact of “predict not taken”"
•  Execution proceeds normally – no penalty"

39"

Impact of “predict not taken”"
•  Bubbles injected into 3 stages during cycle 5"

40"

41"

Branch Penalty Impact"

Example 4" 42"

Branch Prediction"
•  Prior solutions are “ugly”"
•  Better (& more common): guess possible outcome"

–  Technique is called “branch predicting”; needs 2 parts:"
•  “Predictor” to guess where / if instruction will branch"

–  (and to where)"
•  “Recovery Mechanism”:"

–  i.e. a way to fix your mistake"
–  Prior strategy:"

•  Predictor: always guess branch never taken"
•  Recovery: flush instructions if branch taken"

–  Alternative: accumulate info. in IF stage as to…"
•  Whether or not for any particular PC value a branch was

taken next"
•  To where it is taken"
•  How to update with information from later stages"

43"

A Branch Predictor" Predictor for a Single Branch"

44"

state" 2. Predict"
Output T/NT"

1. Access"

3. Feedback T/NT"

T"

Predict Taken" Predict Taken"1" 0"T"

NT"

General Form"

1-bit prediction"

NT"

PC"

Feedback"

Branch History Table of 1-bit Predictor"
BHT also called branch

prediction buffer"

•  Can use only one 1-bit
predictor, but accuracy is low"

•  BHT: use a table of simple
predictors, indexed by bits
from PC"

•  More entries, more cost, but
less conflicts, higher accuracy"

•  BHT can contain complex
predictors"

"

Prediction

K-bit
Branch
address

2k

45"

•  Example: "
–  in a loop, 1-bit BHT will cause 2 mispredictions "

•  Consider a loop of 9 iterations before exit:"
for (…){
 for (i=0; i<9; i++)
 a[i] = a[i] * 2.0;
}
– End of loop case, when it exits instead of looping

as before"
– First time through loop on next time through code,

when it predicts exit instead of looping"
– Only 80% accuracy even if loop 90% of the time"

1 bit weakness"

46"

T

T

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
Taken

11 10

01 00
T

NT

T

NT

NT

•  Solution: 2-bit scheme where change prediction only
if get misprediction twice: !

 
 
 
 
 
 
 
"
•  Blue: stop, not taken"
•  Gray: go, taken"
•  Adds hysteresis to decision making process"

2-bit saturating counter"

47"
48"

•  Branch Target Buffer (BTB): Address of branch index to
get prediction AND branch address (if taken)"
– Note: must check for branch match now, since can’t use wrong

branch address"
•  Example: BTB combined with BHT"
"
"
"
"
"
"
"

Branch PC Predicted PC

=?

PC of instruction
FETCH

Extra
prediction state

bits
Yes: instruction
is branch and use
predicted PC as
next PC

No: branch not
predicted, proceed normally

 (Next PC = PC+4)

Branch target buffer"

49"

Examples…"

Examples 5-9"

50"

Discussion"
•  How does instruction set design impact pipelining?"

•  Does increasing the depth of pipelining always
increase performance?"

51"

•  Throughput: instructions per clock cycle = 1/cpi"
–  Pipeline has fast throughput and fast clock rate"

•  Latency: inherent execution time, in cycles"
–  High latency for pipelining causes problems"

•  Increased time to resolve hazards"

Board"

Comparative performance"

