
Lecture 17  
Introduction to Memory

Hierarchies"

Suggested reading:"
(HP Chapter 5.1-5.2)"

1"

2"

Processor components"

vs."

Processor comparison"

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"

Fundamental lesson(s)"
•  When you load data from disk or store data in memory,

where does it go? How does the processor find it?"

•  In a pipelined datapath, we assume that a memory
reference takes 1 CC. But an off-chip memory access
requires 100s of CCs."
–  How can a memory reference truly be accomplished in 1

CC?"

3"

Why it’s important…"
•  Memory hierarchies prevent programs from having

absolutely abysmal performance"
–  In lab 4, you’ll see how a detailed understanding of the

memory organization can help you write code that is at
least 2X more efficient"

"

4"

Question?"
•  How much of a chip is “memory”?"

–  10%"
–  25%"
–  50%"
–  75%"
–  85%"

5"

Memory and Pipelining"
•  In our 5 stage pipe, we’ve constantly been assuming

that we can access our operand from memory in 1
clock cycle…"
–  We’d like this to be the case, and its possible...but its

also complicated"
–  We’ll discuss how this happens in the next several

lectures"
•  We’ll talk about…"

–  Memory Technology"
–  Memory Hierarchy"

•  Caches"
•  Memory"
•  Virtual Memory"

6"6"

7"

If I say “Memory” what do you think of?"
•  Memory Comes in Many Flavors"

–  SRAM (Static Random Access Memory)"
–  DRAM (Dynamic Random Access Memory)"
–  ROM, Flash, etc."
–  Disks, Tapes, etc."

•  Difference in speed, price and “size”"
–  Fast is small and/or expensive"
–  Large is slow and/or inexpensive"

–  The search is on for a “universal memory”"
–  What’s a “universal memory”"

•  Fast and non-volatile."
–  May be MRAM, PCRAM, etc. etc."

Let’s start with
DRAM."

Its generally the
largest piece of

RAM."

7"

8"

Is there a problem with DRAM?"

µProc"
60%/yr."
(2X/1.5yr)"

DRAM"
9%/yr."
(2X/10yrs)"

1"

10"

100"

1000"

19
80
"

19
81
"

19
83
"

19
84
"

19
85
"

19
86
"

19
87
"

19
88
"

19
89
"

19
90
"

19
91
"

19
92
"

19
93
"

19
94
"

19
95
"

19
96
"

19
97
"

19
98
"

19
99
"

20
00
"

DRAM"

CPU"
19

82
"

Processor-Memory"
Performance Gap: 
grows 50% / year"

Pe
rf

or
m

an
ce
"

Time"

“Moore’s Law”"

Processor-DRAM Memory Gap (latency)"
Why is this a problem?"

8"

9"

More on DRAM"
•  DRAM access on order of 100 ns..."

•  What if clock rate for our 5 stage pipeline was 1 GHZ?"
–  Would the memory and fetch stages stall for 100 cycles?"

•  Actually, yes ... if only DRAM"

•  Caches come to the rescue"
–  As transistors have gotten smaller, its allowed us to put

more (faster) memory closer to the processing logic"
•  The idea is to “mask” the latency of having to go off to main

memory"

Part A"

Caches and the principle of locality…"
•  The principle of locality…"

–  …says that most programs don’t access all code or data
uniformly"

•  i.e. in a loop, small subset of instructions might be executed
over and over again…"

•  …and a block of memory addresses might be accessed
sequentially…"

"
•  This has led to “memory hierarchies”"
•  Some important things to note:"

–  Fast memory is expensive in cost/size"
–  Levels of memory usually smaller/faster than previous"
–  Levels of memory usually “subset” one another"

•  All the stuff in a higher level is in some level below it"

10"

Common memory hierarchy:"

11"

CPU Registers"
100s Bytes"
<10s ns"

Cache"
K Bytes"
10-100 ns"
1-0.1 cents/bit"

Main Memory"
M Bytes"
200ns- 500ns"
$.0001-.00001 cents /bit"

Disk"
G Bytes, 10 ms  
(10,000,000 ns)"
10-5 - 10-6 cents/bit"

Tape"
infinite"
sec-min"
10"-8"

Registers"

Cache"

Memory"

Disk"

Tape"

Upper Level"

Lower Level"

faster"

Larger"

Terminology Summary"
•  Hit: data appears in block in upper level (i.e. block X in cache) "

–  Hit Rate: fraction of memory access found in upper level"
–  Hit Time: time to access upper level which consists of"

•  RAM access time + Time to determine hit/miss"

•  Miss: data needs to be retrieved from a block in the lower level "
(i.e. block Y in memory)"
–  Miss Rate = 1 - (Hit Rate)"
–  Miss Penalty: Extra time to replace a block in the upper level + "

•  Time to deliver the block the processor"

•  Hit Time << Miss Penalty (500 instructions on some microprocessors)"

12"

Lower Level"
Memory"Upper Level"

Memory"
To Processor"

From Processor"
Blk X"

Blk Y"

Average Memory Access Time"

•  Hit time:"
–  basic time of every access."

•  Hit rate (h):"
–  fraction of access that hit"

•  Miss penalty:"
–  extra time to fetch a block from lower level, including time

to replace in CPU"

AMAT = (Hit Time) + (1 - h) x (Miss Penalty)"

13"
Part B,C"

14"

Cache Basics"
•  Cache entries usually referred to as “blocks”"

–  Block is minimum amount of information that can be in
cache"

–  Line size typically power of two"
–  Typically 16 to 128 bytes in size"

15"

Some initial questions to consider"
•  Where can a block be placed in an upper level of

memory hierarchy (i.e. a cache)?"

•  How is a block found in an upper level of memory
hierarchy?"

•  Which cache block should be replaced on a cache miss
if entire cache is full and we want to bring in new data?"

•  What happens if a you want to write back to a memory
location?"
–  Do you just write to the cache?"
–  Do you write somewhere else?"

Where can a block be placed in a cache?"
•  3 schemes for block placement in a cache:"

–  Direct mapped cache:"
•  Block (or data to be stored) can go to only 1 place in cache"
•  Usually: (Block address) MOD (# of blocks in the cache)"

–  Fully associative cache:"
•  Block can be placed anywhere in cache"

–  Set associative cache:"
•  “Set” = a group of blocks in the cache"
•  Block mapped onto a set & then block can be placed

anywhere within that set"
•  Usually: (Block address) MOD (# of sets in the cache)"
•  If n blocks, we call it n-way set associative"

16"Part D"

17"

Where can a block be placed in a cache?"

0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7"
Fully Associative" Direct Mapped" Set Associative"

Set 0"Set 1"Set 2"Set 3"

Block 12 can go"
anywhere"

Block 12 can go"
only into Block 4"

(12 mod 8)"

Block 12 can go"
anywhere in set 0"

(12 mod 4)"

0 1 2 3 4 5 6 7 8 ..."

Cache:"

Memory:" 12"

Associativity"
•  If you have associativity > 1 you have to have a

replacement policy"
– FIFO"
– LRU"
– Random"
"

•  “Full” or “Full-map” associativity means you check
every tag in parallel and a memory block can go into
any cache block"
– Virtual memory is effectively fully associative"
–  (But don’t worry about virtual memory yet)"

18"

How is a block found in the cache?"
•  Cache’s have address tag on each block frame that

provides block address"
–  Tag of every cache block that might have entry is

examined against CPU address (in parallel! – why?)"

•  Each entry usually has a valid bit"
–  Tells us if cache data is useful/not garbage"
–  If bit is not set, there can’t be a match…"

•  How does address provided to CPU relate to entry in
cache?"
–  Entry divided between block address & block offset…"
–  …and further divided between tag field & index field"

19"Part E-F"

How is a block found in the cache?"

•  Block offset field selects data from block"
–  (i.e. address of desired data within block)"

•  Index field selects a specific set"
•  Tag field is compared against it for a hit"

•  Could we compare on more of address than the tag?"
–  Not necessary; checking index is redundant"

•  Used to select set to be checked"
•  Ex.: Address stored in set 0 must have 0 in index field"

–  Offset not necessary in comparison – entire block is
present or not and all block offsets must match"

20"

Block Address"
Tag" Index"

Block"
Offset"

Which block is replaced on a cache miss?"
•  If we look something up in cache and entry not there,

generally want to get data from memory and put it in
cache"
–  B/c principle of locality says we’ll probably use it again"

•  Direct mapped caches have 1 choice of what block to
replace"

•  Fully associative or set associative offer more choices"
•  Usually 2 strategies:"

–  Random – pick any possible block and replace it"
–  LRU – stands for “Least Recently Used”"

•  Why not throw out the block not used for the longest time"
•  Usually approximated, not much better than random – i.e.

5.18% vs. 5.69% for 16KB 2-way set associative"

21"

What happens on a write?"
•  FYI most accesses to a cache are reads:"

–  Used to fetch instructions (reads)"
–  Most instructions don’t write to memory"

•  For MIPS only about 7% of memory traffic involve writes"
•  Translates to about 25% of cache data traffic"

•  Make common case fast! Optimize cache for reads!"
–  Actually pretty easy to do…"
–  Can read block while comparing/reading tag"
–  Block read begins as soon as address available"
–  If a hit, address just passed right on to CPU"

22"

What happens on a write?"
•  Generically, there are 2 kinds of write policies:"

–  Write through"
•  With write through, information written to block in cache and

to block in lower-level memory"
–  Write back"

•  With write back, information written only to cache. It will be
written back to lower-level memory when cache block is
replaced"

•  The dirty bit:"
–  Each cache entry usually has a bit that specifies if a write

has occurred in that block or not…"
–  Helps reduce frequency of writes to lower-level memory

upon block replacement"

23"

What happens on a write?"
•  Write back versus write through:"

–  Write back advantageous because:"
•  Writes occur at the speed of cache and don’t incur delay of

lower-level memory"
•  Multiple writes to cache block result in only 1 lower-level

memory access"
–  Write through advantageous because:"

•  Lower-levels of memory have most recent copy of data"

•  If CPU has to wait for a write, we have write stall"
–  1 way around this is a write buffer"
–  Ideally, CPU shouldn’t have to stall during a write"
–  Instead, data written to buffer which sends it to lower-

levels of memory hierarchy"

24"

What happens on a write?"
•  What if we want to write and block we want to write to

isn’t in cache?"

•  There are 2 common policies:"
–  Write allocate:"

•  The block is loaded on a write miss"
•  The idea behind this is that subsequent writes will be captured

by the cache (ideal for a write back cache)"
–  No-write allocate:"

•  Block modified in lower-level and not loaded into cache"
•  Usually used for write-through caches "

–  (subsequent writes still have to go to memory)"

25"

Memory access equations"
•  Using what we defined on previous slide, we can say:"

–  Memory stall clock cycles = "
•  Reads x Read miss rate x Read miss penalty + "
•  " Writes x Write miss rate x Write miss penalty"

•  Often, reads and writes are combined/averaged:"
–  Memory stall cycles = "

•  Memory access x Miss rate x Miss penalty (approximation)"

•  Also possible to factor in instruction count to get a
“complete” formula:"

26"

27"

Reducing cache misses"
•  Obviously, we want data accesses to result in cache

hits, not misses –this will optimize performance"

•  Start by looking at ways to increase % of hits…."

•  …but first look at 3 kinds of misses!"
–  Compulsory misses:"

•  Very 1st access to cache block will not be a hit –the data’s
not there yet!"

–  Capacity misses:"
•  Cache is only so big. Won’t be able to store every block

accessed in a program – must swap out!"
–  Conflict misses:"

•  Result from set-associative or direct mapped caches"
•  Blocks discarded/retrieved if too many map to a location"

