

CSE 30321 – Lecture 17 – In Class Handout

Part A: Example

- In the slides, I noted what would happen if Fetch/Memory took 100 ns
- Let’s look at a slightly more optimistic case…

- The CPU has a 1 GHz clock rate
- The L1 cache access time is 1 ns

o (The L1 cache is a faster level of memory hierarchy)
- 90% of the time we find data in the L1 cache
- The Main Memory access time is 75 ns

o Thus, if we miss in the L1 cache, we pay a 75 ns penalty
- 1/3 of all instructions are loads and stores
- The base CPI of this machine is 1 (without considering caching)

What is the impact on CPI?
- First, how many instructions reference memory:

o 1 reference for fetch
o 0.33 for load/store
o Thus, there are 1.33 memory references/instruction

- 90% of the time we get an L1 hit – i.e. we find data in L1
- 10% of the time, we have to spend 75 ns

o 0.1 x 75 x 1.33

Thus, the new CPI is:
 = 1 + (0.1 x 75 x 1.33)
 = 10.975!

The take away:
- Even with a 90%, 1 CC hit rate, the performance impact can be fairly severe
- We need to be better

Part B: Average Memory Access Time

Therefore, the Average Memory Access Time is given by:

 AMAT = Hit Time + (1 – Hit Time) x Miss Penalty

 In the previous example: 1 + (1-0.9) x 75 ns à 1 ns + 7.5 ns à 8.5 CCs

Part C: Caches and their structures

Cache Blocks:
- As mentioned, a “block” is the smallest amount of “stuff” (data) that can be brought into a cache

o Generally blocks are between 16-128 bytes of data
- Question:

o In MIPS, datawords are just 4 bytes of data.
o Why bring in 16-128 bytes of data?

- Answer:
o Locality
o (In other words, the idea is that because we referenced a particular data word or instruction

encoding, we’ll probably reference other stuff by that same data/instruction soon … so just
bring it closer to the datapath right away.)

- Therefore, a cache organization might look something like this:

…..
Block 0 Word 0 … Word N
Block 1 Word 0 … Word N
Block 2 Word 0 … Word N
Block 3 Word 0 … Word N
Block 4 Word 0 … Word N

Part D: Where does a block go in the cache?
- If a cache is an array of blocks, how do we choose where a block goes?

o There are 3 ways to decide

1. Direct Mapping

- As an example, let’s say that we have 8 blocks in our cache and the address that we want to load

data from is 12.
- We can use the mod function to select where this block goes.

o E.g. 12 % 8 = Block 4
- Similarly

o 120 % 8 = Block 0
- What if we get the sequence of memory addresses: 12, 20, 12, 20, 12, 20, 12, 20 …

o Both map to Block 4!
o We have to replace a block with each reference

§ (And with this sequence, we would never find the data in the cache)

2. Fully Associative Mapping

- If we have a cache with 8 blocks, the block can go anywhere

o E.g. it could be placed at Block 0, 1, 2, 3, 4, 5, 6, or 7
- The net effect:

o We could potentially eliminate conflicts like you just saw above

o However, the search time will realistically increase significantly

3. Set Associative Mapping
- This involves different sets of blocks
- See the picture below:

Location Data Set
0 0 1
2 1 3
4 2 5
6 3 7

- The basic idea is that a block maps to a set – and then can be placed anywhere within that set.

o Thus, you get some of the speed of a direct mapped cache (e.g. its easier to find where a
block maps too), but could eliminate some of the conflicts associated with a direct mapped
cache.

- Thus, if we have a request for the data at address 12, we would do a mod function with the number
of sets

o E.g. 12 % 4 = Set 0
o The block could then be placed anywhere within Set 0

§ E.g. at Location 0 or Location 1

Part E: How do you find a block?
- The previous discussion focused on how where you place a block in a cache.
- Another question to consider is how you find data associated with a given block.

As an example, let’s assume that we have the instruction: lw $5, 0($2)
- How do we find the data associated with “0($2)” in a cache?
- Well, in MIPS, we use 0($2) to calculate a 32-bit physical address
- We’ll start with that – and divide the physical address up into 3 different fields

o Note that the procedure to be discussed applies even if the address is not 32 bits; we could
just as easily discuss an N-bit physical address.

Bit 31 Bit 0

Tag Index Offset

A very important thing to understand: How to use/interpret each field!

Let’s start with the Index:
- The index bits are used to pick which block (for a direct mapped

cache) or which set (for a set-associative cache) an address will
map to

00 Block / Set 0
01 Block / Set 1
10 Block / Set 2
11 Block / Set 3

- For example, if there are 2 index bits, then there are 4 blocks or 4 sets in the cache that a physical

address may map to

- Another example:
o If a cache has 1024 blocks in it, how many bits of index are needed to address each block?

§ 210 = 1024; therefore 10 bits
o If a cache has 1024 blocks in it and is 8-way set associative, how many bits of index are

needed?
§ Note that 8-way set associative means that there are 8 blocks associated with a

given set
§ However, note that the question explicitly states that there are only 1024 TOTAL

blocks in the cache
§ 210 blocks / 23 blocks / set = 27 sets. Therefore 7 bits of index are needed.

Let’s look at the offset next:
- The offset bits are used to find the right word in a block

o Remember, even though an instruction encoding or data word may be 4 bytes long, blocks
usually contain anywhere from 16-128 bytes!

- The number of bits that comprise the offset depends on:
o If there is more than 1 word / block
o To what level a word can be addressed

§ Remember, MIPS is byte addressable
- Example:

o If data is addressed to the word:
§ If there is just 1 word / block, 0 bits of offset are needed
§ If there are 2 words / block, 1 bit of offset is needed
§ If there are 4 words / block, 2 bits of offset are needed
§ If there are 8 words / block, 3 bits of offset are needed
§ Etc., etc.

- But what if there are 2 words per block and data is byte addressable?

Word 1 Word 2
Byte Byte Byte Byte Byte Byte Byte Byte

- If each byte can be addressed, how many bits of offset are needed?

o Answer: 3
§ There are 8 byte and 8 = 23 … so 3 bits are needed.

The remaining bits form the tag:
- The tag helps us to ensure that we’re looking at the right entry.

Note that:
- The least significant bits of the physical address form the offset
- The next N bits of the physical address form the index
- The last / most significant bits of the physical address form the tag

Part F: Example
- Assume we have lw $8, 0($2)

o 0($2) turns out to be physical address: AA BB CC DD (in hex)
- The first place we would look to find the data associated with address AA BB CC DD is in the cache
- Let’s assume our cache is:

o Direct mapped
o There are 16 words / block
o Data is addressed to the word
o There are 4096 blocks

How many bits of offset are needed?
- 4. 24 = 16.

o We need to pick one of the 16 words in a block

How many bits of index are needed?
- We need to be able to select 1 of 4096 blocks
- 212 = 4096
- Therefore 12 bits of index are needed.

The rest of the bits form the tag.
- Therefore there are 32 - 4 - 12 = 16 bits of tag

For this physical address we would have:

Tag Index Offset
AA BB CC D D

CCD = 1100 * 1100 * 1101 = 327710 th entry (or block)

 D = 1101 = 13th word in that block

