
 
 

CSE 30321 – Lecture 17 – In Class Handout 
 
Part A:  Example 
 
- In the slides, I noted what would happen if Fetch/Memory took 100 ns 
- Let’s look at a slightly more optimistic case… 
 
- The CPU has a 1 GHz clock rate 
- The L1 cache access time is 1 ns 

o (The L1 cache is a faster level of memory hierarchy) 
- 90% of the time we find data in the L1 cache 
- The Main Memory access time is 75 ns 

o Thus, if we miss in the L1 cache, we pay a 75 ns penalty 
- 1/3 of all instructions are loads and stores 
- The base CPI of this machine is 1 (without considering caching) 
 
What is the impact on CPI? 
- First, how many instructions reference memory: 

o 1 reference for fetch 
o 0.33 for load/store 
o Thus, there are 1.33 memory references/instruction 

- 90% of the time we get an L1 hit – i.e. we find data in L1 
- 10% of the time, we have to spend 75 ns 

o 0.1 x 75 x 1.33 
 
Thus, the new CPI is: 
 = 1 + (0.1 x 75 x 1.33) 
 = 10.975! 
 
The take away: 
- Even with a 90%, 1 CC hit rate, the performance impact can be fairly severe 
- We need to be better 
 
 
Part B:  Average Memory Access Time 
 
 
Therefore, the Average Memory Access Time is given by: 
  
 AMAT = Hit Time + (1 – Hit Time) x Miss Penalty 
 
 In the previous example: 1 + (1-0.9) x 75 ns à 1 ns + 7.5 ns à 8.5 CCs 
 
 
 
 
 
 



 
 
 
Part C:  Caches and their structures 
 
Cache Blocks: 
- As mentioned, a “block” is the smallest amount of “stuff” (data) that can be brought into a cache 

o Generally blocks are between 16-128 bytes of data 
- Question: 

o In MIPS, datawords are just 4 bytes of data. 
o Why bring in 16-128 bytes of data? 

- Answer: 
o Locality 
o (In other words, the idea is that because we referenced a particular data word or instruction 

encoding, we’ll probably reference other stuff by that same data/instruction soon … so just 
bring it closer to the datapath right away.) 

- Therefore, a cache organization might look something like this: 
 

….. 
Block 0 Word 0 … Word N 
Block 1 Word 0 … Word N 
Block 2 Word 0 … Word N 
Block 3 Word 0 … Word N 
Block 4 Word 0 … Word N 

       ..... 
 
 
 
Part D:  Where does a block go in the cache? 
- If a cache is an array of blocks, how do we choose where a block goes? 

o There are 3 ways to decide 
 
1. Direct Mapping 
 
- As an example, let’s say that we have 8 blocks in our cache and the address that we want to load 

data from is 12. 
- We can use the mod function to select where this block goes. 

o E.g. 12 % 8 = Block 4 
- Similarly 

o 120 % 8 = Block 0 
- What if we get the sequence of memory addresses:  12, 20, 12, 20, 12, 20, 12, 20 … 

o Both map to Block 4! 
o We have to replace a block with each reference 

§ (And with this sequence, we would never find the data in the cache) 
 
2. Fully Associative Mapping 
 
- If we have a cache with 8 blocks, the block can go anywhere 

o E.g. it could be placed at Block 0, 1, 2, 3, 4, 5, 6, or 7 
- The net effect: 

o We could potentially eliminate conflicts like you just saw above 



 
 

o However, the search time will realistically increase significantly 
 
3. Set Associative Mapping 
- This involves different sets of blocks 
- See the picture below: 
 

Location Data Set 
0  0 1  
2  1 3  
4  2 5  
6  3 7  

 
- The basic idea is that a block maps to a set – and then can be placed anywhere within that set. 

o Thus, you get some of the speed of a direct mapped cache (e.g. its easier to find where a 
block maps too), but could eliminate some of the conflicts associated with a direct mapped 
cache. 

- Thus, if we have a request for the data at address 12, we would do a mod function with the number 
of sets 

o E.g. 12 % 4 = Set 0 
o The block could then be placed anywhere within Set 0 

§ E.g. at Location 0 or Location 1 
 
 
 
Part E:  How do you find a block? 
- The previous discussion focused on how where you place a block in a cache. 
- Another question to consider is how you find data associated with a given block. 
 
As an example, let’s assume that we have the instruction:  lw $5, 0($2) 
- How do we find the data associated with “0($2)” in a cache? 
- Well, in MIPS, we use 0($2) to calculate a 32-bit physical address 
- We’ll start with that – and divide the physical address up into 3 different fields 

o Note that the procedure to be discussed applies even if the address is not 32 bits; we could 
just as easily discuss an N-bit physical address. 

 
Bit 31  Bit 0 

Tag Index Offset 
 
A very important thing to understand:  How to use/interpret each field! 
 
Let’s start with the Index: 
-  The index bits are used to pick which block (for a direct mapped 

cache) or which set (for a set-associative cache) an address will 
map to 

00 Block / Set 0 
01 Block / Set 1 
10 Block / Set 2 
11 Block / Set 3 



 
 
- For example, if there are 2 index bits, then there are 4 blocks or 4 sets in the cache that a physical 

address may map to 
 
 
 

- Another example: 
o If a cache has 1024 blocks in it, how many bits of index are needed to address each block? 

§ 210 = 1024; therefore 10 bits 
o If a cache has 1024 blocks in it and is 8-way set associative, how many bits of index are 

needed? 
§ Note that 8-way set associative means that there are 8 blocks associated with a 

given set 
§ However, note that the question explicitly states that there are only 1024 TOTAL 

blocks in the cache 
§ 210 blocks / 23 blocks / set = 27 sets.  Therefore 7 bits of index are needed. 

 
Let’s look at the offset next: 
- The offset bits are used to find the right word in a block 

o Remember, even though an instruction encoding or data word may be 4 bytes long, blocks 
usually contain anywhere from 16-128 bytes! 

- The number of bits that comprise the offset depends on: 
o If there is more than 1 word / block 
o To what level a word can be addressed 

§ Remember, MIPS is byte addressable 
- Example: 

o If data is addressed to the word: 
§ If there is just 1 word / block, 0 bits of offset are needed 
§ If there are 2 words / block, 1 bit of offset is needed 
§ If there are 4 words / block, 2 bits of offset are needed 
§ If there are 8 words / block, 3 bits of offset are needed 
§ Etc., etc. 

- But what if there are 2 words per block and data is byte addressable? 
 

Word 1 Word 2 
Byte Byte Byte Byte Byte Byte Byte Byte 

 
- If each byte can be addressed, how many bits of offset are needed? 

o Answer:  3 
§ There are 8 byte and 8 = 23 … so 3 bits are needed. 

 
The remaining bits form the tag: 
- The tag helps us to ensure that we’re looking at the right entry. 
 
Note that: 
- The least significant bits of the physical address form the offset 
- The next N bits of the physical address form the index 
- The last / most significant bits of the physical address form the tag 
 
 



 
 
Part F:  Example 
- Assume we have lw $8, 0($2) 

o 0($2) turns out to be physical address:  AA BB CC DD (in hex) 
- The first place we would look to find the data associated with address AA BB CC DD is in the cache 
- Let’s assume our cache is: 

o Direct mapped 
o There are 16 words / block 
o Data is addressed to the word 
o There are 4096 blocks 

 
How many bits of offset are needed? 
- 4.  24 = 16. 

o We need to pick one of the 16 words in a block 
 
How many bits of index are needed? 
- We need to be able to select 1 of 4096 blocks 
- 212 = 4096 
- Therefore 12 bits of index are needed. 
 
The rest of the bits form the tag. 
- Therefore there are 32 - 4 - 12 = 16 bits of tag 
 
For this physical address we would have: 
 

Tag Index Offset 
AA BB CC D D 

 
CCD  = 1100 * 1100 * 1101  = 327710 th entry (or block) 

 D = 1101   = 13th word in that block 
 
 


