
1 

University of Notre Dame 

1 CSE 30321 – Lecture 19 – Cache Organizations 1 

Lecture 19 
Cache Organizations 

2 

University of Notre Dame 

2 CSE 30321 – Lecture 19 – Cache Organizations 

Suggested Readings 
•  Readings 

–  H&P:  Chapter 5.2 and 5.3 

2 

3 

University of Notre Dame 

3 CSE 30321 – Lecture 19 – Cache Organizations 3 

Processor components

vs.

Processor comparison

HLL code translationThe right HW for the 

right application

Writing more 

efficient code

Multicore processors 

and programming

CSE 30321

Goal:

Describe the fundamental components 

required in a single core of a modern 
microprocessor as well as how they interact 

with each other, with main memory, and with 

external storage media.

4 

University of Notre Dame 

4 CSE 30321 – Lecture 19 – Cache Organizations 

A 4-entry direct mapped cache with 4 data words/block 

1 

Physical Address (10 bits) 

Tag 
(6 bits) 

Index 
(2 bits) 

Offset 
(2 bits) 

Assume we want to read the 
following data words: 

Tag       Index  Offset    Address Holds Data 

101010  |  10  |  00   3510 

101010  |  10  |  01   2410 

101010  |  10  |  10   1710 

101010  |  10  |  11   2510 

All of these physical addresses map 
to the same cache entry 

All of these physical addresses 
would have the same tag 

2 
If we read 101010 10 01 we want to bring  
data word 2410 into the cache. 

Where would this data go?  Well, the index 
is 10.  Therefore, the data word will go  
somewhere into the 3rd block of the cache. 
(make sure you understand terminology) 

More specifically, the data word would go 
into the 2nd position within the block –  
because the offset is ’01’ 

3 The principle of spatial locality says that if we use 
one data word, we’ll probably use some data words 
that are close to it – that’s why our block size is  
bigger than one data word.  So we fill in the data 
word entries surrounding 101010 10 01 as well. 

Tag 00 01 10 11 

00 

01 

10 

11 

V D 

101010 2410 3510 1710 2510 



5 

University of Notre Dame 

5 CSE 30321 – Lecture 19 – Cache Organizations 

Tag 00 01 10 11 

00 

01 

10 

11 

V D 

A 4-entry direct mapped cache with 4 data words/block 

101010 

Physical Address (10 bits) 

Tag 
(6 bits) 

Index 
(2 bits) 

Offset 
(2 bits) 

2410 3510 1710 2510 

Therefore, if we get this pattern of 
accesses when we start a new program: 

1.)  101010 10 00 
2.)  101010 10 01 
3.)  101010 10 10 
4.)  101010 10 11 

After we do the read for 101010 10 00 
(word #1), we will automatically get the 
data for words #2, 3 and 4. 

What does this mean?  Accesses (2), (3), 
and (4) ARE NOT COMPULSORY MISSES 

4 5 What happens if we get an access to location: 
 100011 | 10 | 11 (holding data:  1210) 

Index bits tell us we need to look at cache block 10. 

So, we need to compare the tag of this address – 
100011 – to the tag that associated with the current 
entry in the cache block – 101010 

These DO NOT match.  Therefore, the data 
associated with address 100011 10 11 IS NOT VALID.  
What we have here could be: 
•  A compulsory miss  

•  (if this is the 1st time the data was accessed) 
•  A conflict miss: 

•  (if the data for address 100011 10 11 was  
  present, but kicked out by 101010 10 00 – for  
  example) 

6 

University of Notre Dame 

6 CSE 30321 – Lecture 19 – Cache Organizations 

Tag 00 01 10 11 

00 

01 

10 

11 

V D 

This cache can hold 16 data words… 

101010 

Physical Address (10 bits) 

Tag 
(6 bits) 

Index 
(2 bits) 

Offset 
(2 bits) 

2410 3510 1710 2510 

What if we change the way our cache is 
laid out – but so that it still has 16 data 
words?  One way we could do this would 
be as follows: 

6 

Tag 000 

0 

1 

V D 001 010 011 100 101 110 111 

All of the following are true: 
•  This cache still holds 16 words 
•  Our block size is bigger – therefore this should help with compulsory misses 
•  Our physical address will now be divided as follows: 
•  The number of cache blocks has DECREASED 

•  This will INCREASE the # of conflict misses 
Tag (6 bits) Index (1 bit) Offset (3 bits) 

1 cache 
block entry 

7 

University of Notre Dame 

7 CSE 30321 – Lecture 19 – Cache Organizations 

What if we get the same pattern of accesses we had before? 7 

Pattern of accesses: 
(note different # of bits for offset and 
index now) 

1.)  101010 1 000 
2.)  101010 1 001 
3.)  101010 1 010 
4.)  101010 1 011 

Note that there is now more data 
associated with a given cache block. 

However, now we have only 1 bit of index. 
Therefore, any address that comes along that has a tag that is 
different than ‘101010’ and has 1 in the index position is going to result 
in a conflict miss. 

Tag 000 

0 

1 

V D 001 010 011 100 101 110 111 

2410 3510 1710 2510 A10 B10 C10 D10 101010 

8 

University of Notre Dame 

8 CSE 30321 – Lecture 19 – Cache Organizations 

But, we could also make our cache look like this… 7 

There are now just 2 
words associated with 

each cache block. 

Again, let’s assume we want to read the 
following data words: 

Tag       Index  Offset    Address Holds Data 

101010  |  100  |  0   3510 

101010  |  100  |  1   2410 

101010  |  101  |  0   1710 

101010  |  101  |  1   2510 

Assuming that all of these accesses were occurring 
for the 1st time (and would occur sequentially), 
accesses (1) and (3) would result in compulsory 
misses, and accesses would result in hits because 
of spatial locality.  (The final state of the cache 
is shown after all 4 memory accesses). 

1.) 

2.) 

3.) 

4.) 

Tag 0 1 V D 

000 

001 

010 

011 

100 

101 

110 

111 

101010 2410 3510 

101010 2510 1710 

Note that by organizing a cache in this way, conflict misses will be reduced. 
There are now more addresses in the cache that the 10-bit physical address can map too.  



9 

University of Notre Dame 

9 CSE 30321 – Lecture 19 – Cache Organizations 

Tag 0 1 V D 

000 

001 

010 

011 

100 

101 

110 

111 

101010 2410 3510 

101010 2510 1710 

Tag 00 01 10 11 

00 

01 

10 

11 

V D 

101010 2410 3510 1710 2510 

Tag 000 

0 

1 

V D 001 010 011 100 101 110 111 

2410 3510 1710 2510 A10 B10 C10 D10 101010 

8 
All of these caches hold exactly the same amount of 
data – 16 different word entries 

As a general rule of thumb, “long and skinny” caches help to reduce conflict misses, “short and fat” 
caches help to reduce compulsory misses, but a cross between the two is probably what will give you the 
best (i.e. lowest) overall miss rate. 

But what about capacity misses? 

10 

University of Notre Dame 

10 CSE 30321 – Lecture 19 – Cache Organizations 

8 What’s a capacity miss? 

•  The cache is only so big.  We won’t be able to store every block accessed in a program – must  
   them swap out! 
•   Can avoid capacity misses by making cache bigger 

Tag 00 01 10 11 

00 

01 

10 

11 

V D 

101010 2410 3510 1710 2510 

Tag 00 01 10 11 

000 

001 

010 

011 

V D 

10101 2410 3510 1710 2510 

100 

101 

110 

111 

Thus, to avoid capacity 
misses, we’d need to make our 
cache physically bigger – i.e. 
there are now 32 word entries 
for it instead of 16. 

FYI, this will change the way 
the physical address is 
divided.  Given our original 
pattern of accesses, we’d 
have: 

Pattern of accesses: 

1.)  10101 | 010 | 00 = 3510 
2.)  10101 | 010 | 01 = 2410 

3.)  10101 | 010 | 10 = 1710 

4.)  10101 | 010 | 11 = 2510 

(note smaller tag, bigger index) 


