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Problem 1:  (15 points) 
 
Question A:  (5 points) 
Briefly (in 4-5 sentences or a bulleted list) explain why many of the transistors on a modern 
microprocessor chip are devoted to Level 1, Level 2, and sometimes Level 3 cache.  Your answer must 
fit in the box below! 
 
Students’ answers should say something to the effect of: 

- Processing logic is faster than off-chip, 1-transistor DRAM – and this performance gap has been 
continually growing 

- Idea:  bring in subsets of (off-chip) main memory into faster on-chip memory (SRAM) that can 
operate at the speed of the processor 

- Caches help to ensure faster “data supply times” to ensure that logic is not idle for larger 
number of CCs (e.g. the time to access off-chip memory) 

- If instruction encodings and data for load instructions could not be accessed in 1-2 CCs, CPU 
performance would be significantly (and negatively) impacted. 

- A discussion of spatial vs. temporal locality should receive little to no credit – speed differentials 
are the most important consideration in this answer. 

 
In HW 8, you saw that some versions of the Pentium 4 microprocessor have two 8 Kbyte, Level 1 
caches – one for data and one for instructions.  However, a design team is considering another option – 
a single, 16 Kbyte cache that holds both instructions and data.   
 
Additional specs for the 16 Kbyte cache include: 
 

- Each block will hold 32 bytes of data (not including tag, valid bit, etc.) 
- The cache would be 2-way set associative 
- Physical addresses are 32 bits 
- Data is addressed to the word and words are 32 bits 

 
 
 
 
Question B:  (3 points) 
How many blocks would be in this cache? 
 
Answer 

- The cache holds 214 bytes of data 
- Each block holds 25 bytes 
- Thus, there are 214 / 25 = 29 = 512 blocks 
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Question C:  (3 points) 
How many bits of tag are stored with each block entry? 
 
Answer 
We need to figure out how many bits are dedicated to the offset, index and tag.  (Basically, this 
question asks how many bits of tag are needed.) 

- Index: 
o # of sets:  1024 / 2 = 256 = 28 
o Therefore 8 bits of index are needed 

- Offset: 
o # of words per block = 32 / 4 = 8 
o 23 = 8 
o Therefore 3 bits of offset 

- Tag 
o 32 – 3 – 8 = 21 bits of tag 

 
Therefore, 21 bits of tag need to be stored in each block. 
 
Question D:  (4 points) 
Each instruction fetch means a reference to the instruction cache and 35% of all instructions reference 
data memory.  With the first implementation: 
 

- The average miss rate in the L1 instruction cache was 2% 
- The average miss rate in the L1 data cache was 10% 
- In both cases, the miss penalty is 9 CCs 

 
For the new design, the average miss rate is 3% for the cache as a whole, and the miss penalty is 
again 9 CCs.   
 
Which design is better and by how much? 
 
Answer 
Miss penaltyv1 = (1)(.02)(9)  + (0.35)(.1)(9) = .18 + .063 = 0.495 
 
Miss penaltyv2 = (.03)(9)       = 0.270 
 
V2 is the right design choice 
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Problem 2:  (10 points) 
 
Question A:  (4 points) 
Explain the advantages and disadvantages (in 4-5 sentences or a bulleted list) of using a direct 
mapped cache instead of an 8-way set associative cache.  Your answer must fit in the box below! 
 
Answer 

- A direct mapped cache should have a faster hit time; there is only one block that data for a 
physical address can be mapped to 

- The above “pro” can also be a “con”; if there are successive reads to 2 separate addresses that 
map to the same cache block, then there may never be a cache hit.  This will significantly 
degrade performance. 

- In contrast, with a set associative cache, a block can map to one of 8 blocks within a set.  Thus, 
if the situation described above were to occur, both references would be hits and there would be 
no conflict misses. 

- However, a set associative cache will take a bit longer to search – could decrease clock rate. 
 
Question B:  (2 points) 
Assume you have a 2-way set associative cache. 
 

- Words are 4 bytes 
- Addresses are to the byte 
- Each block holds 512 bytes 
- There are 1024 blocks in the cache 

 
If you reference a 32-bit physical address – and the cache is initially empty – how many data words are 
brought into the cache with this reference? 
 
Answer 

- The entire block will be filled 
- If words are 4 bytes long and each block holds 512 bytes, there are 29 / 22 words in the block 
- i.e. there are 27 or 128 words in each block 

 
Question C:  (4 points) 
Which set does the data that is brought in go to if the physical address F A B 1 2 3 8 9 (in hex) is 
supplied to the cache? 
 
Answer 
We need to determine what the index bits are.  From above, we know the offset is 9 bits (remember, 
data is byte addressable) – so we will need to break up the hex address into binary: 
 
  1111  1010 1011 0001 0010 0011 1000 1001 
 
Our offset for this address is:  1 1000 1001 
 
1024 / 2 = 210 / 21 = 512 = 29 – therefore 9 bits of index are required. 
 
These are:  01 n 0010 n 001 which implies the address maps to the 145th set. 
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Problem 6:  (10 points) 
Consider an Intel P4 microprocessor with a 16 Kbyte unified L1 cache.  The miss rate for this cache is 
3% and the hit time is 2 CCs.  The processor also has an 8 Mbyte, on-chip L2 cache.  95% of the time, 
data requests to the L2 cache are found.  If data is not found in the L2 cache, a request is made to a 4 
Gbyte main memory.  The time to service a memory request is 100,000 CCs.  On average, it takes 3.5 
CCs to process a memory request.  How often is data found in main memory? 
 
Average memory access time = Hit Time + (Miss Rate x Miss Penalty) 
 
Average memory access time = Hit TimeL1 + (Miss Rate L1 x Miss Penalty L1) 
  
  Miss PenaltyL1 = Hit TimeL2 + (Miss Rate L2 x Miss Penalty L2) 
  
  Miss PenaltyL2 = Hit TimeMain + (Miss Rate Main x Miss Penalty Main) 
 

3.5 = 2 + 0.03 (15 + 0.05 (200 + X (100,000))) 
    3.5 = 2 + 0.03 (15 + 10 + 5000X) 
    3.5 = 2 + 0.03 (25 + 5000X) 
    3.5 = 2 + 0.75 + 150X 
    3.5 =  2.75 + 150X 
    0.75 = 150X 
    X = .005 
 
Thus, 99.5% of the time, we find the data we are looking for in main memory. 
 


