

Board Notes on Virtual Memory

Part A:
Why Virtual Memory?

- Let’s user program size exceed the size of the physical address space
- Supports protection

o Don’t know which program might share memory at compile time.

Consider the following:

Code from P1 (VAs):!

0 !add $4, $5, $6!

1 !sub $7, $8, $9!
!….!

4095 !xor $7, $8, $9!
4096 !lw $7, 0($10)!

!….!

8191 !sub $7, $10, $5 !

0, 4, … , 4092, 4096, … ,
8188 are all virtual addresses!

16384 = 214!

…to…!

214 + 212 = 20479!

…!

…!

Virtual address, 0-4092!
4 KB “pages”!

(or 212 addressable
locations)!

220 = PA = 1048576!

220 + 212 - 1 = PA = 1052668!

In physical
memory, may
map to different
locations!

Code from P2 (VAs):!

0 !mul $4, $10, $4!

1 !sub $6, $6, $7!
!….!

4092 !add $6, $8, $9!
20480!

20477 + 212 = 24575!

1. CPU supplies a virtual address!

VPN! Offset! 2. Virtual address broken up into 2 fields!

Page Table!

Valid!

Dirty!

LRU!

PFN!

3a. Each entry is
~ 4 bytes…!

4. Concatenate PFN
with offset to form
physical address!

Memory!

5. Physical
address used to
index memory (or
cache)!

3. VPN used to
index page table
… provides PFN!

- Above:
o Assume 4KB pages – therefore, think about “groups of 212 pieces of data”

- Usually, virtual address space is much greater than physical address space
o (Mapping allows code with virtual address to run on any machine.)

Part B:
How do we translate a Virtual Address to a Physical Address
(or alternatively, “How do we know where to start looking in memory?”)

- Good analogy: It’s like finding what cache block a physical address maps to.

Example:

- What if 32-bit virtual address (232 virtual addresses), 4KB pages (like above), 64 MB of main
memory (226 physical addresses)

How is this mapping done?

VPN (Virtual Page Number) OFFSET

PFN (Physical Frame Number) OFFSET

How do we do VPN à PFN mapping?

- Leverage structure called page table
- To make analogy to cache, “data” = PFN
- To make analogy to cache, also have valid, dirty bits
-

- If no valid mapping, get page fault:
o Try to avoid
o Involves lots of disk traffic
o Placement in memory done fully associative, LRU to minimize
o Placement = some extra overhead, but small percent – and worth it to avoid M CC

penalty

Offset still the same because we go down the same distance

More specifically:
The process works like this…

Even more specifically…

- The page table is stored in memory
- The beginning of the page table is stored in the page table register
- OS knows where PT for each program begins; interfaces with architecture to find

