Lecture 21
Virtual Memory

Suggested reading:
(HP Chapter 5.4-5.5)

Page Table Size

page table size

* example #1: 32-bit VA, 4KB pages, 4-byte PTE
* 1M pages (32 bits = 4 GB address space / 4 KB page = 1M pages)
* 1M pages*4bytes = 4MB page table (bad, but could be worse)

* example #2: 64-bit VA, 4KB pages, 4-byte PTE
* 4P pages, 16PB page table (not a viable option)

« upshot: can’t have page tables of this size in memory

techniques for reducing page table size
» multi-level page tables
« inverted page tables

® 2004 by Lebeck, Sorin, Roth, COMPSCI 220 / ECE 252 Lecture Notes
Hill, Wood, Sohi, Smith, Storage Hierarchy Il: Main Memory
Vijaykumar, Lipasti

RELATIVE SIZES

Block replacement

+ Which block should be replaced on a virtual memory
miss?
— Again, we’ll stick with the strategy that it’s a good thing to
eliminate page faults
— Therefore, we want to replace the LRU block
+ Many machines use a “use” or “reference” bit
+ Periodically reset
+ Gives the OS an estimation of which pages are referenced

Writing a block

+ What happens on a write?

— We don’t even want to think about a write through policy!
- Time with accesses, VM, hard disk, etc. is so great that this is
not practical
— Instead, a write back policy is used with a dirty bit to tell if
a block has been written

INTRODUCTION TO TLBS
Page tables and lookups... Paging/VM
+ 1. Its slow! Weve turned every access to memory into
two accesses to memory Operating Physical
—solution: add a specialized “cache” called a “translation System Memory

lookaside buffer (TLB)” inside the processor

+ 2. its still huge!

—even worse: we’re ultimately going to have a page table for
every process. Suppose 1024 processes, that’s 4GB of
page tables!

page table

Paging/VM

Operating Physical
System Memory

cPu X . 556

Disk

Place page table in physical memory
However: this doubles the time per memory access!!

An example of a TLB

Page . . .
Page frame addr. 5. 0ffset Read/write policies and permissions...
>

<30> <1 /
o ev LRU D Tag Phys. Addr.

<1><2><1> <30> <21>

(Low-order 13
bits of addr.)

<13>

I

| 4 J
R physical

32:1 Mux (High-order 21 address

g bits of addr.)
7

Paging/VM

Operating Physical
System Memory
Cache!

Special-purpose cache for translations
Historically called the TLB: Translation Lookaside Buffer

Review: Translation Cache

A way to speed up translation is to use a special cache of recently
used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Page # | Physical Frame # |Dirty |Ref |Valid [Access

H_J

tag
Really just a cache (a special-purpose cache) on the page table
mappings

TLB access time comparable to cache access time
(much less than main memory access time)

Review: Translation Cache

Just like any other cache, the TLB can be organized as fully
associative, set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries
even on high end machines. This permits fully associative lookup
on these machines. Most mid-range machines use small n-way set
associative organizations.

CPU

Translation
with a TLB

Cache

hit

data

Main

Memory|

The “big picture” and TLBs

+ Address translation is usually on the critical path...

— ...which determines the clock cycle time of the pP
+ Even in the simplest cache, TLB values must be read

and compared

A FULL ADDRESS TRANSLATION

Virtual Address

Try to read
from page

table

Replace
page from
disk

No

TLB miss
stall

The “big picture” and TLBs

No @ Yes

TLB access

Setin TLB

Cache/buffer
memory write

Cache mis:
stall

Examples

