Lecture 21
Virtual Memory

Suggested reading:
(HP Chapter 5.4-5.5)

Page Table Size

page table size

* example #1: 32-bit VA, 4KB pages, 4-byte PTE
* 1M pages (32 bits = 4 GB address space / 4 KB page = 1M pages)
* 1M pages*4bytes = 4MB page table (bad, but could be worse)

* example #2: 64-bit VA, 4KB pages, 4-byte PTE
* 4P pages, 16PB page table (not a viable option)

« upshot: can’t have page tables of this size in memory

techniques for reducing page table size
» multi-level page tables
« inverted page tables
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RELATIVE SIZES

Block replacement

+ Which block should be replaced on a virtual memory
miss?
— Again, we’ll stick with the strategy that it’s a good thing to
eliminate page faults
— Therefore, we want to replace the LRU block
+ Many machines use a “use” or “reference” bit
+ Periodically reset
+ Gives the OS an estimation of which pages are referenced



Writing a block

+ What happens on a write?

— We don’t even want to think about a write through policy!
- Time with accesses, VM, hard disk, etc. is so great that this is
not practical
— Instead, a write back policy is used with a dirty bit to tell if
a block has been written

INTRODUCTION TO TLBS
Page tables and lookups... Paging/VM
+ 1. Its slow! Weve turned every access to memory into
two accesses to memory Operating Physical
—solution: add a specialized “cache” called a “translation System Memory

lookaside buffer (TLB)” inside the processor

+ 2. its still huge!

—even worse: we’re ultimately going to have a page table for
every process. Suppose 1024 processes, that’s 4GB of
page tables!

page table
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Place page table in physical memory
However: this doubles the time per memory access!!

An example of a TLB
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Special-purpose cache for translations
Historically called the TLB: Translation Lookaside Buffer

Review: Translation Cache

A way to speed up translation is to use a special cache of recently
used page table entries -- this has many names, but the most
frequently used is Translation Lookaside Buffer or TLB

Virtual Page # | Physical Frame # |Dirty |Ref |Valid [Access

H_J

tag
Really just a cache (a special-purpose cache) on the page table
mappings

TLB access time comparable to cache access time
(much less than main memory access time)



Review: Translation Cache

Just like any other cache, the TLB can be organized as fully
associative, set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries
even on high end machines. This permits fully associative lookup
on these machines. Most mid-range machines use small n-way set
associative organizations.
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The “big picture” and TLBs

+ Address translation is usually on the critical path...

— ...which determines the clock cycle time of the pP
+ Even in the simplest cache, TLB values must be read

and compared
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Examples




