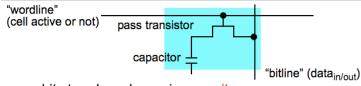

main memory reg memory technology (DRAM) interleaving 1\$ D\$ special DRAMs L2 processor/memory integration L3 virtual memory and address translation memory disk (swap) COMPSCI 220 / ECE 252 Lecture Notes © 2004 by Lebeck, Sorin, Roth, Storage Hierarchy II: Main Memory Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

Lecture 22 Storage and I/O

Suggested reading: (HP Chapter 6.3)

SRAM (Static Random Access Memory)


- not very dense (six transistors per bit)

+ fast

+ doesn't need to be "refreshed" (data stays as long as power is on)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy I: Caches

DRAM (Dynamic Random Access Memory)

- bit stored as charge in capacitor
 - optimized for density (1 transistor for DRAM vs. 6 for SRAM)
- capacitor discharges on a read (destructive read)
 read is automatically followed by a write (to restore bit)
- charge leaks away over time (not static)
 - refresh by reading/writing every bit once every 2ms (row at a time)
- access time = time to read
- cycle time = time between reads > access time

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

1

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Storage Hierarchy II: Main Memory

DRAM Chip Specs

Year	#bits	Access Time	Cycle Time
1980	64Kb	150ns	300ns
1990	1Mb	80ns	160ns
1993	4Mb	60ns	120ns
2000	64Mb	50ns	100ns
2004	1Gb	45ns	75ns

density: +60% annual

· Moore's law: density doubles every 18 months

speed: %7 annual

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Comparison with SRAM

SRAM

- · optimized for speed, then density
 - + 1/4–1/8 access time of DRAM
 - 1/4 density of DRAM
- bits stored as flip-flops (4-6 transistors per bit)
- · static: bit not erased on a read
 - + no need to refresh

 - + access time = cycle time

context of leakage!

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Viiavkumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Example: Simple Main Memory

- 32-bit wide DRAM (1 word of data at a time)
 pretty wide for an actual DRAM
- access time: 2 cycles (A)
- transfer time: 1 cycle (T)
 - time on the bus
- cycle time: 4 cycles (B = cycle time access time)
 B includes time to refresh after a read
- what is the miss penalty for a 4-word block?

cycle	addr	mem
1	12	Α
2		Α
2 3 4		T/B
4		B
5	13	A
6		Α
7		T/B
8		В
9	14	Α
10		Α
11		T/B
12		В
13	15	Α
14		Α
15		T/B
16		В

Simple Main Memory

4-word cycle = 16 cycles

can we speed this up?

- lower latency?
 - no
 - A,B & T are fixed
- higher bandwidth?

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Bandwidth: Wider DRAMs

cycle	addr	mem
1	12	A
2		A
3		T/B
4		В
5	14	Α
6		A
7		T/B
8		В

new parameter

64-bit DRAMs

4-word cycle = 8 cycles

- 64-bit bus

- wide buses (especially off-chip) are hard
- · electrical problems
- 64-bit DRAM is probably too wide

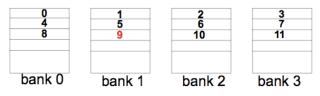
© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Simple Interleaving

cycle	addr	bank0	bank1	bank2	bank3
1	12	A	A	A	A
2		A	A	Α	Α
3		T/B	B	B	В
4		В	T/B	В	В
5				Т	В
6					Т

4-word access = 6 cycles

+ overlap access with transfer


+ and still use a 32-bit bus!

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Bandwidth: Simple Interleaving/Banking

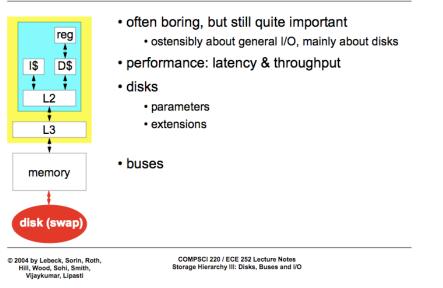
use multiple DRAMs, exploit their aggregate bandwidth

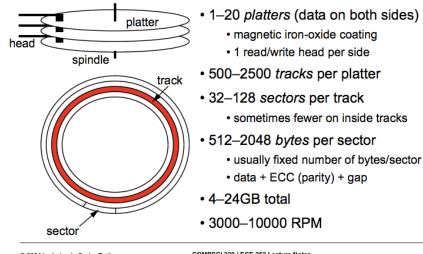
- each DRAM called a bank
 - not true: sometimes collection of DRAMs together called a bank
- M 32-bit banks
- · simple interleaving: banks share address lines
- word A in bank (A % M) at (A div M)
 e.g., M=4, A=9: bank 1, location 2

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Processor/Memory Integration

the next logical step: processor and memory on same chip


- move on-chip: FP, L2 caches, graphics. why not memory?
- problem: processor/memory technologies incompatible
 - · different number/kinds of metal layers
 - DRAM: capacitance is a good thing, logic: capacitance a bad thing


what needs to be done?

- use some DRAM area for simple processor (10% enough)
- · eliminate external memory bus, milk performance from that
- integrate interconnect interfaces (processor/memory unit)
- re-examine tradeoffs: technology, cost, performance
- research projects: PIM, IRAM

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Viiavkumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy II: Main Memory

Storage Hierarchy III: I/O System

Disk Parameters

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijavkumar, Lipast

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

Disk Performance Example

- parameters
 - 3600 RPM \Rightarrow 60 RPS (may help to think in units of tracks/sec)
 - avg seek time: 9ms
 - 100 sectors per track, 512 bytes per sector
 - controller + queuing delays: 1ms
- Q: average time to read 1 sector (512 bytes)?
 - rate_{transfer} = 100 sectors/track * 512 B/sector * 60 RPS = 2.4 MB/s
 - t_{transfer} = 512 B / 2.4 MB/s = 0.2ms
 - t_{rotation} = .5 / 60 RPS = 8.3ms
 - t_{disk} = 9ms (seek) + 8.3ms (rotation) + 0.2ms (xfer) + 1ms = 18.5ms
 - t_{transfer} is only a small component! counter-intuitive?
 - end of story? no! t_{aueuing} not fixed (gets longer with more requests)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

Disk Usage Models

 data mining + supercomputing · large files, sequential reads

What metrics are important for what applications?

- raw data transfer rate (rate_{transfer}) is most important
- transaction processing
 - · large files, but random access, many small requests
 - IOPS is most important
- time sharing filesystems
 - small files, sequential accesses, potential for file caching
 - IOPS is most important

must design disk (I/O) system based on target workload

use disk benchmarks (they exist)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith Vijaykumar, Lipasti

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

Disk Alternatives

- solid state disk (SSD)
 - DRAM + battery backup with standard disk interface
 - + fast: no seek time, no rotation time, fast transfer rate
 - expensive
- FLASH memory
 - + fast: no seek time, no rotation time, fast transfer rate
 - + non-volatile
 - slow
 - "wears" out over time

• optical disks (CDs, DVDs)

- · cheap if write-once, expensive if write-multiple
- slow

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O Actually, reads are proportional to normal DRAM, but writes take longer

> © 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti

- increases cost

fixed head: head per track

+ seek time eliminated

- low track density

COMPSCI 220 / ECE 252 Lecture Notes Storage Hierarchy III: Disks, Buses and I/O

Extensions to Conventional Disks

· parallel transfer: simultaneous read from multiple platters

- difficulty in looking onto different tracks on multiple surfaces

- lower cost alternatives possible (disk arrays)

· increasing density: more sensitive heads, finer control

More Extensions to Conventional Disks

- disk caches: disk-controller RAM buffers data
 - + fast writes: RAM acts as a write buffer
 - + better utilization of host-to-device path
 - high miss rate increases request latency
- · disk scheduling: schedule requests to reduce latency
 - e.g., schedule request with shortest seek time
 - e.g., "elevator" algorithm for seeks (head sweeps back and forth)
 - works best for unlikely cases (long queues)

© 2004 by Lebeck, Sorin, Roth, Hill, Wood, Sohi, Smith, Vijaykumar, Lipasti