Lecture 23: Board Notes: Introduction to Parallel Processing

Part A:
Consider a processor that does register renaming.

Each instruction must spend at least 1 CC in a reservation station

ALU operations take 1 CC to execute.
o There are an unlimited number of functional units.

If an instruction in a RS is waiting for data produced by a previously issued instruction, it
will obtain that data during the previously issued instruction’s WB stage — and can
execute in the next CC.
o i.e. if instruction j enters WB in cycle 7, and instruction j+4 is waiting on data from
instruction j, instruction j+4’s RS will be updated in cycle 7. Instruction j+4 can

execute in cycle 8
Only 1 instruction is fetched and decoded during each clock cycle.
Assume RS are unlimited.

There are unlimited common data bus resources. Therefore there are no structural
hazard stalls when instructions need to write back.

2 instructions may commit in each CC.

Multiply instructions take 4 CCs to execute, Adds take 1 CC to execute.

Fill in the pipe trace for the instruction sequence shown on the next page.
(F) Fetch, (D) Decode, (RS) Reservation Station, (E) Execute, (W) Write Back, (C) Commit

PART A
Instruction 1 2 3 4 5 6 7 8 9 10 | 11 12 | 13 [14 | 15 | 16 | 17 | 18

A Addr1,r1,r1 F D R E w Cc
B Addri, r1,r1 F D R R E w Cc
Cc Mulr1, r1, r1 F D R R R E E E E w Cc
D Sub r2, r2, r2 F D R E w Cc C Cc Cc Cc
E Add r1,r2, r2 F D R R E w Cc Cc Cc Cc
F Mul r2, r3, r3 F D R E E E E w Cc
G Addri, r1,r1 F D R R E w Cc Cc Cc

Part B: Example 1:
Assume we want to split up a problem to run on 1024 processors instead of 1. However, only half of
the code is parallelizable. What speedup would we see from going from 1 processor to 10247

Speedupoverall = L F = L 0.5 =1.998!
(1= Fagarer) + o 2" (1-0.5)+ .
Sp eedup parallel 1024

If the fraction of code that is parallelizable increases from 0.5 to 0.99, speedup is still only 91, not 1024!

Part B: Example 2:

Assume that we have a given workload that involves:
- Sum of 10 scalars
- 10 x 10 matrix sum

Part A:
What is the speedup if we increase the number of processors dedicated to the problem to 10? To 100?

1 Processor:

Time = (1 0+ 100) X tadd = 110 X tagq
- 10 scalar adds + 100 adds for each element in the matrix
10 Processors:
Time = 10 X taqq + (1 00/1 O) X tadd = 20 x tadd
Speedup = 110 X tagq / 20 X tagq = 5.5
(best uniprocessor) = g55 %:.O?f the potential
100 Processors:
Time = 10 X taqq + (1 00/1 00) X taqd = 11 X taqq
Speedup = 110 X tagq / 11 X taqq = 10
(best uniprocessor) = 10 % of the potential
(10 /100)

This assumed that the load can be balanced across processors

Part B:
What is the speedup if the matrix size is now 100 x 100?

1 Processor:
Time = (10 + 10000) x tadd = 10010 X taqq
- 10 scalar adds + 10000 adds for each element in the matrix

10 Processors:

Time = 10 X taqq + (1 0000/1 O) X tadd = 1010 X taqq
Speedup = 10010 X tagg / 1010 X tagq = 9.9
(best uniprocessor) = %99 %:.O?f the potential
100 Processors:
Time = 10 X taqq + (1 0000/1 00) X tadd = 110 X tagq
Speedup = 10010 X tagg / 110 X taqq = 91
(best uniprocessor) = 91 % of the potential
(91/100)

This assumes load balancing is possible; if problem is smaller, scalar parts dominates (not parallel)

Part C:

In this question, you’re going to leverage techniques that you’ve learned so far in class to quantitatively
see how a multi-core computer architecture might improve overall performance (i.e. decrease execution
time). We’ll keep the discussion pretty simple for now...

Given the above context, assume that we want to compare 2 designs — each with its own execution
model:

- Design 1 is a single-core machine with a 4 GHz clock rate.

- Design 2 is a dual-core machine with a clock rate that is 20% slower.

Assume that we are interested in how long it will take to execute all of the instructions associated with 2
processes on each design.

You know the following:
- Process 1 requires 2.5 million MIPS instructions
- Process 2 requires 6 million MIPS instructions
- In the tables below, I've listed the number of CCs each instruction “class” requires. Note that the
number of CCs per class differs from design-to-design. The percentage of each instruction
class per process is also listed.

Instruction Type % (Process 1) % (Process 2)
ALU 45% 65%
Store 12% 5%
Load 22% 15%
Branch/Jump 21% 15%
Instruction Type | CCs on Design 1 | CCs on Design 2
ALU 4 4
Store 4 5
Load 5 6
Branch/Jump 3 3

(Note difference in shaded boxes)

On Design 1, Process 1 will be executed first, there will be a context switch (where we update the
register file with the data for Process 2, etc. that will take 100,000 CCs), and then Process 2 will run
until completion. On Design 2, each process can be mapped to a different core so there is no context
switch overhead.

What performance improvement do we get by executing the instructions for these two processes on the
dual core machine?

Solution:

CPU Time — Design 1, Process 1:
= 2.5M Instructions x [(0.45)(4) + (0.12)(4) + (0.22)(5) + (0.21)(3)] CCs / Inst x 0.25x10°s / CC
=0.002506 s

Overhead:
= 100,000 CCs x 0.25x10°s / CC
=0.000025 s

CPU Time — Design 1, Process 2:
= 6M Instructions x [(0.65)(4) + (0.05)(4) + (0.15)(5) + (0.15)(3)] CCs / Inst x 0.25x10®°s / CC
=0.006 s

Total: ~0.0085 s

CPU Time — Design 2, Process 1:
= 2.5M Instructions x [(0.45)(4) + (0.12)(5) + (0.22)(6) + (0.21)(3)] CCs / Inst x 0.313x10°s / CC
=0.0034 s

CPU Time — Design 2, Process 2:
= 6M Instructions x [(0.65)(4) + (0.05)(5) + (0.15)(6) + (0.15)(3)] CCs / Inst x 0.313x10°s / CC
=0.007875 s

Total: ~0.007875 s (b/c the processes run in parallel)

Therefore, 0.0085 / 0.00785 ~ 1.08 (therefore Design 2 is about 8% faster)

Part D:

Question:
- Assume that you have a system that uses 10000 disks
- The MTTF is 1,200,000 hours
- The disks are used 24 hours a day
- If a disk fails, you replace it with one that has the same reliability characteristics
- How many disks fail per year?

Failed Disks: (10000 drives) x (8760 hours / drive) / (1,200,000 hours/ failure) = 73
Thus, the Annual Failure Rate is 0.73%

But if in a supercomputing system, what if an entire computation must halt to replace???

