

Lecture 23: Board Notes: Introduction to Parallel Processing

Part A:
Consider a processor that does register renaming.

- Each instruction must spend at least 1 CC in a reservation station

- ALU operations take 1 CC to execute.

o There are an unlimited number of functional units.

- If an instruction in a RS is waiting for data produced by a previously issued instruction, it
will obtain that data during the previously issued instruction’s WB stage – and can
execute in the next CC.

o i.e. if instruction j enters WB in cycle 7, and instruction j+4 is waiting on data from
instruction j, instruction j+4’s RS will be updated in cycle 7. Instruction j+4 can
execute in cycle 8

- Only 1 instruction is fetched and decoded during each clock cycle.

- Assume RS are unlimited.

- There are unlimited common data bus resources. Therefore there are no structural

hazard stalls when instructions need to write back.

- 2 instructions may commit in each CC.

- Multiply instructions take 4 CCs to execute, Adds take 1 CC to execute.

Fill in the pipe trace for the instruction sequence shown on the next page.
(F) Fetch, (D) Decode, (RS) Reservation Station, (E) Execute, (W) Write Back, (C) Commit

 PART A

 Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A Add r1 ,r1, r1 F D R E W C

B Add r1, r1, r1 F D R R E W C

C Mul r1, r1, r1 F D R R R E E E E W C

D Sub r2, r2, r2 F D R E W C C C C C

E Add r1, r2, r2 F D R R E W C C C C

F Mul r2, r3, r3 F D R E E E E W C

G Add r1, r1, r1 F D R R E W C C C

Part B: Example 1:
Assume we want to split up a problem to run on 1024 processors instead of 1. However, only half of
the code is parallelizable. What speedup would we see from going from 1 processor to 1024?

€

speedupoverall =
1

(1−Fparallel)+
Fparallel

Speedupparallel

=
1

(1−0.5)+ 0.5
1024

= 1.998!

If the fraction of code that is parallelizable increases from 0.5 to 0.99, speedup is still only 91, not 1024!

Part B: Example 2:
Assume that we have a given workload that involves:

- Sum of 10 scalars
- 10 x 10 matrix sum

Part A:
What is the speedup if we increase the number of processors dedicated to the problem to 10? To 100?
1 Processor:

Time = (10 + 100) x tadd = 110 x tadd
- 10 scalar adds + 100 adds for each element in the matrix

10 Processors:
Time = 10 x tadd + (100/10) x tadd = 20 x tadd
Speedup = 110 x tadd / 20 x tadd = 5.5
 (best uniprocessor) = 55 % of the potential (5.5 / 10)

100 Processors:
Time = 10 x tadd + (100/100) x tadd = 11 x tadd
Speedup = 110 x tadd / 11 x tadd = 10
 (best uniprocessor) = 10 % of the potential
 (10 / 100)

This assumed that the load can be balanced across processors

Part B:
What is the speedup if the matrix size is now 100 x 100?
1 Processor:

Time = (10 + 10000) x tadd = 10010 x tadd
- 10 scalar adds + 10000 adds for each element in the matrix

10 Processors:
Time = 10 x tadd + (10000/10) x tadd = 1010 x tadd
Speedup = 10010 x tadd / 1010 x tadd = 9.9
 (best uniprocessor) = 99 % of the potential (9.9 / 10)

100 Processors:
Time = 10 x tadd + (10000/100) x tadd = 110 x tadd
Speedup = 10010 x tadd / 110 x tadd = 91
 (best uniprocessor) = 91 % of the potential
 (91 / 100)

This assumes load balancing is possible; if problem is smaller, scalar parts dominates (not parallel)

Part C:
In this question, you’re going to leverage techniques that you’ve learned so far in class to quantitatively
see how a multi-core computer architecture might improve overall performance (i.e. decrease execution
time). We’ll keep the discussion pretty simple for now…

Given the above context, assume that we want to compare 2 designs – each with its own execution
model:

- Design 1 is a single-core machine with a 4 GHz clock rate.
- Design 2 is a dual-core machine with a clock rate that is 20% slower.

Assume that we are interested in how long it will take to execute all of the instructions associated with 2
processes on each design.

You know the following:

- Process 1 requires 2.5 million MIPS instructions
- Process 2 requires 6 million MIPS instructions
- In the tables below, I’ve listed the number of CCs each instruction “class” requires. Note that the

number of CCs per class differs from design-to-design. The percentage of each instruction
class per process is also listed.

Instruction Type % (Process 1) % (Process 2)

ALU 45% 65%
Store 12% 5%
Load 22% 15%

Branch/Jump 21% 15%

Instruction Type CCs on Design 1 CCs on Design 2
ALU 4 4
Store 4 5
Load 5 6

Branch/Jump 3 3

(Note difference in shaded boxes)

On Design 1, Process 1 will be executed first, there will be a context switch (where we update the
register file with the data for Process 2, etc. that will take 100,000 CCs), and then Process 2 will run
until completion. On Design 2, each process can be mapped to a different core so there is no context
switch overhead.

What performance improvement do we get by executing the instructions for these two processes on the
dual core machine?

Solution:
CPU Time – Design 1, Process 1:

= 2.5M Instructions x [(0.45)(4) + (0.12)(4) + (0.22)(5) + (0.21)(3)] CCs / Inst x 0.25x10-9s / CC
= 0.002506 s

Overhead:
 = 100,000 CCs x 0.25x10-9s / CC
 = 0.000025 s

CPU Time – Design 1, Process 2:

= 6M Instructions x [(0.65)(4) + (0.05)(4) + (0.15)(5) + (0.15)(3)] CCs / Inst x 0.25x10-9s / CC
= 0.006 s

Total: ~0.0085 s

CPU Time – Design 2, Process 1:

= 2.5M Instructions x [(0.45)(4) + (0.12)(5) + (0.22)(6) + (0.21)(3)] CCs / Inst x 0.313x10-9s / CC
= 0.0034 s

CPU Time – Design 2, Process 2:

= 6M Instructions x [(0.65)(4) + (0.05)(5) + (0.15)(6) + (0.15)(3)] CCs / Inst x 0.313x10-9s / CC
= 0.007875 s

Total: ~0.007875 s (b/c the processes run in parallel)

Therefore, 0.0085 / 0.00785 ~ 1.08 (therefore Design 2 is about 8% faster)

Part D:

Question:

- Assume that you have a system that uses 10000 disks
- The MTTF is 1,200,000 hours
- The disks are used 24 hours a day
- If a disk fails, you replace it with one that has the same reliability characteristics
- How many disks fail per year?

Failed Disks: (10000 drives) x (8760 hours / drive) / (1,200,000 hours/ failure) = 73

Thus, the Annual Failure Rate is 0.73%

But if in a supercomputing system, what if an entire computation must halt to replace???

