Lecture 24: Board Notes: Cache Coherency

Part A: What makes a memory system coherent?
Generally, 3 qualities that must be preserved... [1¥elel=y1[0]\ 9]
(1) Preserve program order:

- Avread of A by P, will reference the value written by the most recent write to A (i.e. by P4)
- Thus, in the absence of sharing, each processor behaves as a uni-processor would

(2) All writes must be seen by all processors:
- If Py writes to A, and P, reads A after a certain amount of time, and there is no other write to A in
between, P, reads the value written by P;.
- Thus, P, must eventually see the new value...

(3) Causality must be preserved:
- Writes to the same location are serialized
o i.e. 2 writes to the same location A are seen in the same order by all processors
- Example:
o A=0
o Pyincrements A
o P, waits until A =1
o Psincrements A
o PszseesA=2
- In other words, different processors should not see these writes in different orders
o i.e. P3should not see the write by P first and then the write by P4

Hardware must provide this behavior + we would still like to have benefits of caches, etc.

Part B: Snooping
Consider a $, on one node of a multiprocessor (i.e. multi-core chip) with a re-designed block:

Tag #1 Tag #2 Data

Shared
Valid
Dirty

Cache “snoops” the bus —i.e. every time a tag is transmitted on the bus, it checks to see if it owns it.

Bus connecting all nodes



- All bus activity must be compared to cache entries
o i.e.if Node 1 sends out a message saying it just wrote to a block with Tag XYZ, if Node 2
has a valid cached copy of a block with Tag XYZ, then some action will need to be taken
- Why 2 sets of tags?
o Can use 1 said to do lookups for normal reads and others to do “snoop” checks

MOVE ON TO PART C...

Part C: Snooping — Update vs. Invalidate protocols
When listening on the bus, what to we do if there is a cached copy and a “write” by another node is
broadcast?

Answer:
Generally follow 1 of 2 protocols: UPDATE or INVALIDATE

What event? Update protocol Invalidate protocol
A burst of writes from 1 Each write updates all cached All cached copies are no longer
processor to 1 address copies (preserves property 2 in | valid on 1* write; next readgets
Part A) new copy (preserves property 2
in Part A)
Writes to different words in the Update sent for EACH word No need for subsequent
same cache block invalidates; first write invalidates

other block copies; might still

See picture with bus broadcast address depending

on coherency protocol

Producer-consumer latency Producer sends update; Producer invalidates
consumer reads new value in consumer’s copy; consumer will
cache experience a read miss and

must request a new block

When writing parallel code, this
can degrade performance!

Regarding producer-consumer latency:
- The invalidate protocol ensures that Property 3 above is preserved as writes are ordered by bus
invalidates
o Usually wins...
- The update protocol ensures that Property 3 above is preserved as all nodes see writes in the
order in which they obtain access to the bus
o Means LOTS of bus traffic!

Part D: MSI Cache Coherency Protocol
How do we actually implement snooping?

Can support a protocol called MSI - letters refer to a state the cache block could be in...
- Invalid State:
o Block B is notin cache C
- Modified State:



o Block B is in cache C and is dirty

o Consequences:
= When this block is kicked out, main memory must be updated
= We can read or write a block without bus traffic

= There is no other cached copy of this block

- Shared State:

o Block B is in multiple caches (C,’s)
o Consequences and Insight:

= Multiple copies are being read simultaneously
= Must send request to “upgrade” to M state before a write

Consider the following state transitions = also, BIT\VA (e L0Iz1=Ke] N =1e).\3{b):

State
Transition

Local Request or
Bus Message?

What’s happening?

I=>S

Local request

Cache block currently invalid processor X tries to
read

Data not present

Send bus request for data from memory

Bus message

A cache sees a read or write request for block A ...
but it doesn't have it so we stay in |
(remember — must always snoop)

S>1

Bus message

Another $ has written to a block that is cached locally
With the invalidate protocol, a locally cached copy
must be invalidated

S>S

Local request

We do a local read of data that is already cached
locally

S>S

Bus message

Another cache asks for a copy of a block we have in
order to do a read

As the request is just for another cached copy for
reading, existing copies can stay in the shared state

M->S

Bus message

A block has been modified by node X; node Y wants
to read this data

Therefore data must be written back to memory
before and/or in addition to going to the cache
requesting it

Data is shared again and memory has a copy as well

S>M

Local request

Local process writes to cache

Must broadcast that it is doing a write to invalidate
other copies that may be cached

Locally, the block transitions to a modified state

M->M

Local request

If we have a modified copy, and there are no other
copies out there, we can read and write as we please

Local request

Local copy is not in the cache and we want to write
We get it, write to it, and place it in a modified state

10

M > |

Bus request

Another cache wants to write our modified data
We must invalidate our local copy ... as it no longer
is the “most recent” and send our data to memory

Elalelle] =T s M |other words in block could be dirty)]




Part E: MESI Cache Coherency Protocol

Can the overhead associated with the S - M transition be improved?
- Yes: Ifin S state, could be only copy...

- We really just need to invalidate, but instead we send out a write request message that is
broadcast to call nodes, memory
- Can cut this overhead by adding an “E” state - which stands for “Exclusive”
o Eliminates bus operations when node X wants to do a read/write and there are no other
cached copies
o Go from E > M with no bus traffic

Would add 5 states to the MSI state machine
- The first 10 are exactly the same
- There is NO overhead
o We need 2 bits of information to encode 3 states, we also need 2 bits of information to
encode 4 states

Consider the following state transitions > also, DRAW PICTURE ON BOARD:

State Local Request or | What’s happening?
Transition | Bus Message?

1 1> E Local request - We do aread (when we initially did NOT have the
block in our cache AND no other block has the data
cached)

2 E->I Bus request - Another processor with no cached copy wants to
write

- Our processor must invalidate its copy
- As no modifications have been made (i.e. no dirty bit
was set) there is no need to write back to memory

too
3 E->E Local request - We read our cache copy
- No other note has a cached copy so we stay in E
4 E->M Local request - We are in E and write our block

- Must move to M
- Will determine if writeback needed on an invalidate

5 E>S Bus request - Another node wants to read data we have cached
- No writes were made however so we can stay in S
and keep a copy cached




Part F: Support for Intervention + Determining Block State
(i.e. support for intervention + determining block state)
First ... how do we know what state to cache block B in?

- If there’s an address and data, receiver just sees an address and data.

- Where did it come from?

Realistically, it works like this:

Bin ‘s’ state Bin ‘s’ state

E3-SinS A E1 - snoop E2 - pull share high

Bus connecting all nodes

Share Signal

CPU1 wants to read B - puts read request on the bus

Does CPU1 cache B in ‘S’ or ‘E’ state with MESI?

Solution > use share signal

Share always low until another node pulls it high

CPU2 snoops CPU1’s requests, pulls share signal high > CPU1 sees share go high and puts B in
shared state

moowy

Part G: How a Directory Protocol Might Work

Assume the following state:

Directory Address Dirty Presence
12345678
Node #3 5004 0 10001000 # nodes 1,5 have data
5008 1 10000000
5012 0 00000111

- If request for data at address 5008 from node 2, data should reside on node 3
- Node 2 sends request for data at address 5008 to node 3
- Node 3 checks directory and sees node 1 has a modified copy; requests data for node 2
- Node 3 gets data back, updates directory, sends data to node 2
o Dirty: 0 Presence: 01000000



