

Lecture 24: Board Notes: Cache Coherency

Part A: What makes a memory system coherent?

Generally, 3 qualities that must be preserved… (SUGGESTIONS?)

(1) Preserve program order:

- A read of A by P1 will reference the value written by the most recent write to A (i.e. by P1)
- Thus, in the absence of sharing, each processor behaves as a uni-processor would

(2) All writes must be seen by all processors:

- If P1 writes to A, and P2 reads A after a certain amount of time, and there is no other write to A in
between, P2 reads the value written by P1.

- Thus, P2 must eventually see the new value…

(3) Causality must be preserved:

- Writes to the same location are serialized
o i.e. 2 writes to the same location A are seen in the same order by all processors

- Example:
o A =0
o P1 increments A
o P2 waits until A = 1
o P2 increments A
o P3 sees A = 2

- In other words, different processors should not see these writes in different orders
o i.e. P3 should not see the write by P2 first and then the write by P1

Hardware must provide this behavior + we would still like to have benefits of caches, etc.

Part B: Snooping
Consider a $, on one node of a multiprocessor (i.e. multi-core chip) with a re-designed block:

!
"
#
$%
&
'

(
#
)*
&
'

+
*$
,-
' .#/'01' .#/'02' +#,#'

345'6788%698/'#))'87&%5'

:#6"%';5877<5=',"%'>45'?'*@%@'%A%$-'9B%'#',#/'*5',$#85B*C%&'78',"%'>45D'*,'6"%6E5',7'5%%'*F'*,'7G85'*,@'

:HI'

- All bus activity must be compared to cache entries
o i.e. if Node 1 sends out a message saying it just wrote to a block with Tag XYZ, if Node 2

has a valid cached copy of a block with Tag XYZ, then some action will need to be taken
- Why 2 sets of tags?

o Can use 1 said to do lookups for normal reads and others to do “snoop” checks

MOVE ON TO PART C…

Part C: Snooping – Update vs. Invalidate protocols
When listening on the bus, what to we do if there is a cached copy and a “write” by another node is
broadcast?

Answer:
Generally follow 1 of 2 protocols: UPDATE or INVALIDATE

What event? Update protocol Invalidate protocol
A burst of writes from 1
processor to 1 address

Each write updates all cached
copies (preserves property 2 in
Part A)

All cached copies are no longer
valid on 1st write; next readgets
new copy (preserves property 2
in Part A)

Writes to different words in the
same cache block

 See picture with bus

Update sent for EACH word No need for subsequent
invalidates; first write invalidates
other block copies; might still
broadcast address depending
on coherency protocol

Producer-consumer latency Producer sends update;
consumer reads new value in
cache

Producer invalidates
consumer’s copy; consumer will
experience a read miss and
must request a new block

When writing parallel code, this
can degrade performance!

Regarding producer-consumer latency:

- The invalidate protocol ensures that Property 3 above is preserved as writes are ordered by bus
invalidates

o Usually wins…
- The update protocol ensures that Property 3 above is preserved as all nodes see writes in the

order in which they obtain access to the bus
o Means LOTS of bus traffic!

Part D: MSI Cache Coherency Protocol

How do we actually implement snooping?

Can support a protocol called MSI à letters refer to a state the cache block could be in…

- Invalid State:
o Block B is not in cache C

- Modified State:

o Block B is in cache C and is dirty
o Consequences:

§ When this block is kicked out, main memory must be updated
§ We can read or write a block without bus traffic
§ There is no other cached copy of this block

- Shared State:
o Block B is in multiple caches (Cn’s)
o Consequences and Insight:

§ Multiple copies are being read simultaneously
§ Must send request to “upgrade” to M state before a write

Consider the following state transitions à also, DRAW PICTURE ON BOARD:

 State

Transition
Local Request or
Bus Message?

What’s happening?

1 I à S Local request - Cache block currently invalid processor X tries to
read

- Data not present
- Send bus request for data from memory

2 I à I Bus message - A cache sees a read or write request for block A …
but it doesn't have it so we stay in I

- (remember – must always snoop)
3 S à I Bus message - Another $ has written to a block that is cached locally

- With the invalidate protocol, a locally cached copy
must be invalidated

4 S à S Local request - We do a local read of data that is already cached
locally

5 S à S Bus message - Another cache asks for a copy of a block we have in
order to do a read

- As the request is just for another cached copy for
reading, existing copies can stay in the shared state

6 M à S Bus message - A block has been modified by node X; node Y wants
to read this data

- Therefore data must be written back to memory
before and/or in addition to going to the cache
requesting it

- Data is shared again and memory has a copy as well
7 S à M Local request - Local process writes to cache

- Must broadcast that it is doing a write to invalidate
other copies that may be cached

- Locally, the block transitions to a modified state
8 M à M Local request - If we have a modified copy, and there are no other

copies out there, we can read and write as we please
9 I à M Local request - Local copy is not in the cache and we want to write

- We get it, write to it, and place it in a modified state
10 M à I Bus request - Another cache wants to write our modified data

- We must invalidate our local copy … as it no longer
is the “most recent” and send our data to memory
and/or cache (other words in block could be dirty)

Part E: MESI Cache Coherency Protocol

Can the overhead associated with the S à M transition be improved?

- Yes: If in S state, could be only copy…

- We really just need to invalidate, but instead we send out a write request message that is
broadcast to call nodes, memory

- Can cut this overhead by adding an “E” state à which stands for “Exclusive”
o Eliminates bus operations when node X wants to do a read/write and there are no other

cached copies
o Go from E à M with no bus traffic

Would add 5 states to the MSI state machine

- The first 10 are exactly the same
- There is NO overhead

o We need 2 bits of information to encode 3 states, we also need 2 bits of information to
encode 4 states

Consider the following state transitions à also, DRAW PICTURE ON BOARD:

 State

Transition
Local Request or
Bus Message?

What’s happening?

1 I à E Local request - We do a read (when we initially did NOT have the
block in our cache AND no other block has the data
cached)

2 E à I Bus request - Another processor with no cached copy wants to
write

- Our processor must invalidate its copy
- As no modifications have been made (i.e. no dirty bit

was set) there is no need to write back to memory
too

3 E à E Local request - We read our cache copy
- No other note has a cached copy so we stay in E

4 E à M Local request - We are in E and write our block
- Must move to M
- Will determine if writeback needed on an invalidate

5 E à S Bus request - Another node wants to read data we have cached
- No writes were made however so we can stay in S

and keep a copy cached

Part F: Support for Intervention + Determining Block State

(i.e. support for intervention + determining block state)

First … how do we know what state to cache block B in?

- If there’s an address and data, receiver just sees an address and data.
- Where did it come from?

Realistically, it works like this:

!"

#$%"&"#$%"&" #$%"&"#$%"'"
!" !"

()*"+,--.+/-0"122"-,3.*"

4516."470-12"

("7-"8*9"*:1:." ("7-"8*9"*:1:."

;&"<"*-,,=" ;'">"=)22"*516."5705";?">"@"7-"4"

A. CPU1 wants to read B à puts read request on the bus
B. Does CPU1 cache B in ‘S’ or ‘E’ state with MESI?
C. Solution à use share signal
D. Share always low until another node pulls it high
E. CPU2 snoops CPU1’s requests, pulls share signal high à CPU1 sees share go high and puts B in

shared state

Part G: How a Directory Protocol Might Work

Assume the following state:
Directory Address Dirty Presence
 1 2 3 4 5 6 7 8
Node #3 5004 0 1 0 0 0 1 0 0 0 # nodes 1,5 have data
 5008 1 1 0 0 0 0 0 0 0
 5012 0 0 0 0 0 0 1 1 1

- If request for data at address 5008 from node 2, data should reside on node 3
- Node 2 sends request for data at address 5008 to node 3
- Node 3 checks directory and sees node 1 has a modified copy; requests data for node 2
- Node 3 gets data back, updates directory, sends data to node 2

o Dirty: 0 Presence: 0 1 0 0 0 0 0 0

