
- 1 -

Lecture 25: Board Example: Cache Coherency

Assume that we have a centralized-shared-memory architecture with 4 processors sharing a bus;
each processor has a local, direct-mapped cache:

You know the following:

- Each processor’s cache is initially empty
- There are 4 states that a cache entry could be in:

o (M) Modified, (E) Exclusive, (S) Shared, (I) Invalid
! (This is the MESI protocol discussed in class.)

- The caches at the processing nodes snoop on the bus
- A write back, write invalidate policy is used.

The following events happen in SEQUENTIAL order:

Event # Processor # Event Comment
1 2 Writes to address with tag A
2 2 Writes to address with tag K
3 2 Reads from address with tag Z Address with tag Z maps to

address with tag A
4 1 Writes to address with tag A
5 4 Reads from address with tag Z
6 3 Writes to address with tag I Address with tag I maps to

address with tag K
7 2 Reads from address with tag Q Address with tag Q maps to

address with tag Z
8 2 Reads from address with tag B
9 2 Writes to address with tag B

10 1 Reads from address with tag B
11 1 Writes to address with tag K
12 3 Reads from address with tag N
13 3 Reads from address with tag K

Processor
1

Processor
2

Processor
3

Processor
4

Memory

- 2 -

Question A:
True or False? After Event 1, A is cached in the Exclusive (E) state.

False. Because we are doing a write, A is cached in the modified state.

Question B:
After Event 3, what state is Z cached in?

Z is cached in the Exclusive (E) state as we are just doing a read.

Question C:
True or False? After Event 4, address Z’s data on node 2 must be written back to main memory.

False. Even though A maps to Z, A and Z are cached on different nodes.

Question D:
After Event 5, what state is Z in on node 4?

Z is in the shared state as there are now 2 copies of Z are cached.

Question E:
True or False? Even though A maps to Z, we do not have to invalidate A on Node 1 after Event 5.

True. They are on different nodes.

Question F:
True or False? After Event 7, how many entries (blocks) on node 2’s cache are invalidated?

0 or 1 both accepted.

Question F:
After Event 7, what state is Q in?

The Exclusive (E) state.

Question G:
After Event 10, what state is B in on node 1?

The Shared (S) state as there is another copy on node 2 as well.

Question H:
After Event 13, how many valid entries are there in node 2’s cache?

2.

Event #1: P2 writes to address with tag A!

1!

Event #2: P2 writes to address with tag K!

2!

Event #3: P2 reads from address with tag Z!

3!

Address with tag Z maps to same block as address with tag A!

Data associated with A kicked out of cache due to conflict miss;!
would be written back to memory because of modification!

Event #4: P1 writes to address with tag A!

4!

Event #5: P4 reads from address with tag Z!

5!

Note that cache block with tag Z on Node 2 moves from E state to S
state as there are now 2 cached copies in system!

(also, note typo in handout ! entries (3), (2) should be with Node 2)!

Event #6: P3 writes to address with tag I!

6!

Address with tag I maps to same block as address with tag K!

I and K are on different nodes, so there is no problem.!

Event #7: P2 reads from address with tag Q!

7!

Address with tag Q maps to same block as address with tag Z!

Now we have a conflict miss on Node 2; data in block with tag Z is
kicked out; no write back needed because Z is just cached in

shared state!

Event #8: P2 reads from address with tag B!

8!

Event #9: P2 writes to address with tag B!

9!

Block with tag B moves to the M state.!

Event #10: P1 reads from address with tag B!

10!

Entry in Node 2 must move to S state, write data back!

Event #11: P1 writes to address with tag K!

11!

Entry in Node 2 must write data back and then invalidate itself!

Event #12: P3 reads from address with tag N!

12!

Event #13: P3 reads from address tag K!

13!

Entry in Node 1 must write data back and then move to the shared
state – as we are just doing a read on P3.!

