
Lecture 26  
Interconnection Networks"

Suggested reading:"
(HP Chapter 7.8)"

1"

Processor components"

vs."

Processor comparison"

University of Notre Dame!

CSE 30321 - Lecture 01 - Introduction to CSE 30321! 44!

vs.!

for i=0; i<5; i++ {!

!a = (a*b) + c;!

}!

MULT r1,r2,r3 ! # r1 ! r2*r3!

ADD r2,r1,r4 ! # r2 ! r1+r4!

110011! 000001! 000010! 000011!

001110! 000010! 000001! 000100!

or!

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"
•  Explain & articulate why modern

microprocessors now have more than
one core and how SW must adapt. "

2"

Fundamental lesson(s)"
•  Additional hardware support is required for parts of a

parallel system to communicate with one another"

–  (i.e. when one node needs data another has worked on)"

–  The overhead associated with communication can
actually make part of a program take longer than if the
same part were executed serially"

3"

Why it’s important…"
•  Communication overhead can/will degrade program

performance"

–  (Thus, performance improvements you think you’ll get
by parallelizing your code are not what you actually get)"
•  Today we’ll talk about another reasons why…"

–  Put another way…"
•  Assume 1 iteration of a task takes N CCs"
•  Parallelizing the task’s execution should speed up the total

task, but now each iteration may take N+M CCs"
–  The M CC overhead can (i) reduce performance gains one

might expect and (ii) impact the degree of parallelization that
should be employed"

4"

What if you write
good code for 4-
core chip and then
get an 8-core chip?"

Impediments to Parallel Performance"
•  Reliability:"

–  Want to achieve high “up time” – especially in non-CMPs"
•  Contention for access to shared resources"

–  i.e. multiple accesses to limited # of memory banks may
dominate system scalability"

•  Programming languages, environments, & methods:"
–  Need simple semantics that can expose computational

properties to be exploited by large-scale architectures"
•  Algorithms"

•  Cache coherency"
–  P1 writes, P2 can read"

•  Protocols can enable $ coherency but add overhead"

5"

€

Speedup = 1

1-Fractionparallelizable[] +
Fractionparallelizable

N

Not all problems
are parallelizable"

Overhead where no actual processing is done."

We’ll talk more quantitatively about this today."

Challenges: Latency"
•  …is already a major source of performance degradation"

–  Architecture charged with hiding local latency"
•  (that’s why we talked about registers & caches)"

–  Hiding global latency is also task of programmer"
•  (I.e. manual resource allocation)"

•  Today:"
–  access to DRAM in 100s of CCs"
–  round trip remote access in 1000s of CCs"
–  multiple clock cycles to cross chip or to communicate

from core-to-core"
•  Not “free” as we assumed in send-receive example from L27"

Overhead where no actual processing is done."
6"

Some Perspective…"

7"

Pentium III Die Photo"
•  EBL/BBL - Bus logic, Front, Back"
•  MOB - Memory Order Buffer"
•  Packed FPU - MMX Fl. Pt. (SSE)"
•  IEU - Integer Execution Unit"
•  FAU - Fl. Pt. Arithmetic Unit"
•  MIU - Memory Interface Unit"
•  DCU - Data Cache Unit"
•  PMH - Page Miss Handler"
•  DTLB - Data TLB"
•  BAC - Branch Address Calculator"
•  RAT – Register Alias Table"
•  SIMD - Packed Fl. Pt."
•  RS - Reservation Station"
•  BTB - Branch Target Buffer"
•  IFU - Instruction Fetch Unit (+I$)"
•  ID - Instruction Decode"
•  ROB - Reorder Buffer"
•  MS - Micro-instruction Sequencer"1st Pentium III, Katmai: 9.5 M transistors, 12.3 *

10.4 mm in 0.25-mi. with 5 layers of aluminum"
CPSC 614:Graduate Computer Architecture, TAMU, Prof. Lawrence
Rauchwerger; Based on Lectures by Prof. David A. Patterson UC Berkeley"
"

Deterministic connections as needed."

8"

Recent multi-core die photos  
(Route packets, not wires?)"

9"

http://dx.doi.org/10.1109/ISSCC.2010.5434030"http://dx.doi.org/10.1109/ISSCC.2010.5434074"

http://dx.doi.org/10.1109/ASSCC.2009.5357230" http://dx.doi.org/10.1109/ISSCC.2010.5434077"

…takes advantage of 8 voltage
and 28 frequency islands to
allow independent DVFS of
cores and mesh. As
performance scales, the
processor dissipates between
25 W and 125 W. … 567 mm2
processor on 45 nm CMOS
integrates 48 IA-32 cores and 4
DDR3 channels in a 2D-mesh
network. Cores communicate
through message passing
using 384 KB of on-die shared
memory. Fine-grain power
management "

Likely to see HW support for
parallel processor
configurations:"
•  Coherency"

"+"
•  On-chip IC NWs"

Takeaways from last 2 slides"
•  Cores communicate with each other"

–  (and each others memory)"

•  Can no longer just realize direct, deterministic
connection between processor’s functional units"

•  Fortunately, wide body of work to start with to enable
more efficient/reasonable inter-core communication"

10"

IMPLEMENTING ON-CHIP
INTERCONNECTION NETWORKS"

11"

Lot’s of history to leverage…"
•  Lot’s of XAN’s"

–  SAN – system area network"
•  Usually connects homogeneous nodes"
•  Physical extent small – less than 25 meters – often less"
•  Connectivity ranges from 100s to 1000s of nodes"
•  Main focus is high bandwidth and low latency"

–  LAN – local area network"
•  Heterogeneous hosts assumed – designed for generality"
•  Physical extent usually within a few hundred kms"
•  Connectivity usually in the hundreds of nodes"
•  Supported by workstation industry"

12"

Lot’s of history to leverage…"
–  WAN – wide area network"

•  General connectivity for 1000s of heterogeneous nodes"
•  High bandwidth (good), high latency (not so good)"
•  Physical extent = thousands of kilometers"
•  Developed by the telecommunications industry"

•  Idea:"
–  Borrow knowledge, lessons learned from these

application spaces in design/creation of on-chip networks"

13"

Shared media networks"
•  Messages are broadcast everywhere"

–  Useful for cache coherency"
–  Not unlike ethernet"

Node" Node" Node"
Shared Media"
(Ethernet)"

Example… 2 nodes attempt to write to same shared location…"

14"

Switched media networks"

•  Switches introduce overheads"
–  But, no time wasted on arbitration and collisions"

•  Multiple transfers can be in progress if different links used"

•  Circuit or Packet Switching"
–  Circuit switching: end-to-end connections"

•  Reserves links for a connection (e.g. phone network)"
–  Packet switching: each packet routed separately"

•  Links used only when data transferred (e.g. Internet Protocol)"

Node"

Node"

Node"

Node"

Switch"

15"

Shared vs. switched media"
•  Shared Media"

–  Broadcast to everyone!"

•  Switched Media (needs real routing)"
–  Source-based routing: message specifies path to the

destination "
–  Virtual Circuit: circuit established from source to

destination, message picks circuit to follow"
–  Destination-based routing: message specifies

destination, switch must pick the path"
•  deterministic: always follow same path"
•  adaptive: pick different paths to avoid congestion, failures"
•  randomized routing: pick between several good paths to

balance network load"

versus"

16"

1"

2"

Switched media: message transmission"
•  Store-and-Forward"

–  Switch receives entire packet, then forwards it"

•  Wormhole routing"
–  Packet consists of flits (N bytes each)"
–  First flit contains header with destination address"
–  Switch gets header, decides where to forward"
–  Other flits forwarded as they arrive"
–  If traffic?"

•  Stop the tail when head stops"
•  Each flit along the way blocks the a link"
•  One busy link creates other busy links (and a traffic jam!)"

versus"

17"

1"

2"

Switched media: message transmission"
•  Cut-Through Routing"

–  In absence of traffic, similar to wormhole…"
–  If outgoing link busy…"

•  Receive and buffer incoming flits"
•  Buffered flits remain until link is free"
•  When link free, flits start worming out of the switch"
•  Need packet-sized buffer space in each switch"

–  (Wormhole routing switch needs to buffer only one flit)"

3"

Summary: wormhole vs. cut through"
•  Wormhole routing:"

–  When head of message is blocked, message stays strung
out over the network"

•  Potentially blocking other messages…"
•  …but needs only buffer the piece of the packet that is sent

between switches"

•  Cut through routing"
–  Lets tail continue when head is blocked"

•  Whole message is accordian’ed into a single switch"
•  Requires a buffer large enough to hold the largest packet"

HOW ARE NETWORKS
ORGANIZED?"

(More connectivity = more hardware – that’s harder to implement)"

20"

Crossbars"
•  Crossbars"

–  Any node can
communicate with another
with 1 pass through IC"

–  Very low switching delay,
no internal contention"

–  Complexity grows as
square of number of links"

•  Cannot have too many links
(i.e. 64 in, 64 out)"

P0"

P1"

P2"

P3"

P4"

P5"

P6"

P7"

21"

Omega networks"
•  Omega"

–  Uses less HW"
•  (n/2 log2n vs. n2 switches)"

–  More contention"
–  Build switches with more

ports using small
crossbars"

–  Lower complexity per
link, but longer delay and
more contention"

P0"

P1"

P2"

P3"

P4"

P5"

P6"

P7"

A C

B D

22"

Tree topologies"

Circles = switches, squares = processor-memory nodes"

0 1 2 3
4 5 6 7

8 9 10 11
12 13 14 15

Higher bandwidth, higher in the tree – match common communication patterns"

23"

Ring topologies"
•  Small switches are placed at each computer"

–  Avoids a full interconnection network"
•  Disadvantages"

–  Some nodes are not directly connected"
•  Results in multiple “stops”, more overhead"

–  Average message must travel through n/2 switches"
•  (n = # nodes)"

•  Advantages"
–  Rings can have several transfers going at once"

Example"
of a ring"
topology"

24"

Meshes, tori, hypercubes…"
2D grid or mesh of 16 nodes" 2D tour of 16 nodes"

Hypercube tree of 16 nodes (16 = 24, so n = 4)"

25"

Summarizing thoughts…"
•  Let’s consider crossbar again:"

–  A communication link between every switch…"
–  An expensive alternative to a ring…"
–  Get big performance gains, but big costs as well"

•  Usually cost scales by the square of the number of nodes"

•  High costs led designers to invent “things in between”"
–  In other words, topologies between the cost of rings and

the performance of fully connected networks"

•  Whether or not a topology is “good” typically depends
on the situation"

•  For on-chip MPPs, grids, tori, etc. are popular"

26"

DISCUSSION:  
PARTS AND PERFORMANCE
OF AN ON-CHIP NETWORK"

27"Part A"

A 64-CORE CASE STUDY"

28"

NW topologies"

From Balfour, Dally, Supercomputing"29"

From Balfour, Dally, Supercomputing"30"

From Balfour, Dally, Supercomputing"31"

From Balfour, Dally, Supercomputing"32"

From Balfour, Dally, Supercomputing"33"

From Balfour, Dally, Supercomputing"34"

A FINAL EXAMPLE"

35"Part B"

