Lecture 26
Interconnection Networks

Suggested reading:
(HP Chapter 7.8)

Multicore processors
and programming

+ Explain & articulate why modern
microprocessors now have more than
one core and how SW must adapt.

for i=0; i<5; i++ {
a = (a*b) + c;

}

MULT r1,r2,r3 #r1 € r2*r3
ADD r2,r1,r4 ‘1, #1r2 € ri4rd

110011 | 000001 | 000010 | 000011

001110 | 000010 | 000001 | 000100

Fundamental lesson(s)

- Additional hardware support is required for parts of a
parallel system to communicate with one another

— (i.e. when one node needs data another has worked on)

— The overhead associated with communication can
actually make part of a program take longer than if the
same part were executed serially

Why it’s important...

- Communication overhead can/will degrade program
performance

— (Thus, performance improvements you think you’ll get
by parallelizing your code are not what you actually get)

Today we’ll talk about another reasons why...

— Put another way...
Assume 1 iteration of a task takes N CCs

Parallelizing the task’s execution should speed up the total
task, but now each iteration may take N+M CCs
— The M CC overhead can (i) reduce performance gains one

might expect and (ii) impact the degree of parallelization that
should be employed

Impediments to Parallel Performance

Y Reliability:
— Want to achieve high “up time” — especially in non-CMPs
Yr Contention for access to shared resources

— 1.e. multiple accesses to limited # of memory banks may
dominate system scalability

- Programming languages, environments, & methods:

— Need simple semantics that can expose computational
properties to be exploited by large-scale architectures

. Algorithms What if you write

1
_ good code for 4-
Not all problems] Speedup | Fraction . eizae COFe chip and then
are parallelizable [1 - Fractlonpara"elizable] + N get an 8-core chip?

Yc Cache coherency

— P1 writes, P2 can read
- Protocols can enable $ coherency but add overhead

* Overhead where no actual processing is done.

Challenges: Latency*

- ...Is already a major source of performance degradation

— Architecture charged with hiding local latency
- (that’ s why we talked about registers & caches)

— Hiding global latency is also task of programmer
- (l.e. manual resource allocation)

- Today:
— access to DRAM in 100s of CCs
— round trip remote access in 1000s of CCs

— multiple clock cycles to cross chip or to communicate
from core-to-core

- Not “free” as we assumed in send-receive example from L27

We’ll talk more quantitatively about this today.

* Overhead where no actual processing is done.

Some Perspective...

On-chip interconnect latency

80
60

gw/

% 207

& 0

250 180 130 100 80 60
[nm technology]

» “For a 60-nanometer process a signal can reach only 5% of the
die’s length in a clock cycle” [p.Matrke (Texas Instruments), IEEE Computer Sept. 97]
 Shift from function-centric to communication-centric design

Pentium Ill Die Photo

Deterministic connections as needed.

10.4 mm in 0.25-mi. with 5 layers of aluminum

EBL/BBL - Bus logic, Front, Back
MOB - Memory Order Buffer
Packed FPU - MMX FI. Pt. (SSE)
IEU - Integer Execution Unit

FAU - Fl. Pt. Arithmetic Unit

MIU - Memory Interface Unit

DCU - Data Cache Unit

PMH - Page Miss Handler

DTLB - Data TLB

BAC - Branch Address Calculator
RAT - Register Alias Table

SIMD - Packed FI. Pt.

RS - Reservation Station

BTB - Branch Target Buffer

IFU - Instruction Fetch Unit (+I$)
ID - Instruction Decode

ROB - Reorder Buffer

MS - Micro-instruction Sequencer

Recent multi-core die photos

(Route packets, not wires?)

2 2 e

Likely to see HW support for
parallel processor

figurations:
o
m?_ I Coherency

cLC L7 git2Te2f L217 |- CLC +

LZD'..n o, 202D RL2D|L2DIL2D g =
11_~|_1111£4_‘1 14] 15 PR

----- | o : ‘l‘ = |
: ¥ I SPARQ | SPA 4|SPAR(G| SPA » AR | SPAREISPAR(| SPAR
: ol 10 111‘ ! [ﬁ

"% COMERENCY iiiifge COMpRENCY =er-

NOHERENCY |

* On-chip IC NWs

http://dx.doi.org/10.1109/ISSCC.2010.5434074 http://dx.doi.org/10.11084S5SCC.2010.5434030
...takes advantage of 8 voltage
and 28 frequency islands to
allow independent DVFS of
cores and mesh. As
performance scales, the
. Pprocessor dissipates between
12 25Wand 125 W. ... 567 mm?
& processor on 45 nm CMOS
integrates 48 1A-32 cores and 4
DDRS3 channels in a 2D-mesh
network. Cores communicate

DDR3I MC
DDR3 MC

Interconnect | 1 Poly, 9 Metal (Cu)

Transistors | Die: 1.3B, Tie: 48M

Technology | 45nm Process ' i

;:::: ;::T,:; through message passing

Sorals | 970 using 384 KB of on-die shared

— memory. Fine-grain power
http://dx.doi.org/10.1109/ASSCC.2009.5357230 http://dx.doi.org/10.1109/ISSCC.2010.5434077 management

Takeaways from last 2 slides

« Cores communicate with each other
— (and each others memory)

- Can no longer just realize direct, deterministic
connection between processor’s functional units

- Fortunately, wide body of work to start with to enable
more efficient/reasonable inter-core communication

10

IMPLEMENTING ON-CHIP
INTERCONNECTION NETWORKS

11

Lot’s of history to leverage...

- Lot’s of XAN’s

— SAN - system area network

- Usually connects homogeneous nodes
- Physical extent small — less than 25 meters — often less

- Connectivity ranges from 100s to 1000s of nodes
- Main focus is high bandwidth and low latency

— LAN - local area network
- Heterogeneous hosts assumed — designed for generality
- Physical extent usually within a few hundred kms
- Connectivity usually in the hundreds of nodes
- Supported by workstation industry

12

Lot’s of history to leverage...

— WAN - wide area network
- General connectivity for 1000s of heterogeneous nodes

- High bandwidth (good), high latency (not so good)
- Physical extent = thousands of kilometers
- Developed by the telecommunications industry

+ |dea:

— Borrow knowledge, lessons learned from these
application spaces in design/creation of on-chip networks

13

Shared media networks

- Messages are broadcast everywhere
— Useful for cache coherency
— Not unlike ethernet

!

Example... 2 nodes attempt to write to same shared location...

Shared Media
(Ethernet)

-]

14

Switched media networks

2

A

o] e
o o

- Switches introduce overheads
— But, no time wasted on arbitration and collisions

- Multiple transfers can be in progress if different links used

- Circuit or Packet Switching
— Circuit switching: end-to-end connections
Reserves links for a connection (e.g. phone network)

— Packet switching: each packet routed separately
Links used only when data transferred (e.g. Internet Protocol)

15

Shared vs. switched media

- Shared Media
— Broadcast to everyone!

Versus

- Switched Media (needs real routing)

— Source-based routing: message specifies path to the
destination

— Virtual Circuit: circuit established from source to
destination, message picks circuit to follow

— Destination-based routing: message specifies
destination, switch must pick the path
- deterministic: always follow same path
- adaptive: pick different paths to avoid congestion, failures

- randomized routing: pick between several good paths to
balance network load

16

Switched media: message transmission

- Store-and-Forward 1
— Switch receives entire packet, then forwards it

Versus

- Wormbhole routing 2
— Packet consists of flits (N bytes each)
— First flit contains header with destination address
— Switch gets header, decides where to forward
— Other flits forwarded as they arrive

— If traffic?

- Stop the tail when head stops
- Each flit along the way blocks the a link
- One busy link creates other busy links (and a traffic jam!)

17

Switched media: message transmission

» Cut-Through Routing 3
— In absence of traffic, similar to wormhole...

— If outgoing link busy...
- Receive and buffer incoming flits
- Buffered flits remain until link is free
- When link free, flits start worming out of the switch

- Need packet-sized buffer space in each switch
— (Wormhole routing switch needs to buffer only one flit)

Summary: wormhole vs. cut through

- Wormhole routing:
— When head of message is blocked, message stays strung
out over the network
- Potentially blocking other messages...

- ...but needs only buffer the piece of the packet that is sent
between switches

+ Cut through routing

— Lets tail continue when head is blocked
- Whole message is accordian’ed into a single switch
- Requires a buffer large enough to hold the largest packet

(More connectivity = more hardware — that’s harder to implement)

HOW ARE NETWORKS
ORGANIZED?

20

Crossbars

« Crossbars

— Any node can
communicate with another
with 1 pass through IC

— Very low switching delay,
no internal contention

— Complexity grows as
square of number of links

- Cannot have too many links
(i.e. 64 in, 64 out)

Yt e re e e
Yt e re e e
Yt e re e e
Yt e re e e
Yt e re e e
Yt e re e o
[t e e e

21

Omega networks

- Omega
— Uses less HW
* (n/2 log,n vs. n? switches)
— More contention

— Build switches with more
ports using small
crossbars

— Lower complexity per

link, but longer delay and
more contention —

i

i

@

S

22

Tree topologies

Circles = switches, squares = processor-memory nodes

Ring topologies

- Small switches are placed at each computer
— Avoids a full interconnection network

- Disadvantages

— Some nodes are not directly connected
- Results in multiple “stops”, more overhead

— Average message must travel through n/2 switches
* (n =# nodes)
- Advantages
— Rings can have several transfers going at once

Example _—" : : : : : :
of aring
topology

24

Meshes, tori, hypercubes.

2D grid or mesh of 16 nodes

—

2D tour of 16 nodes

—

BLBLBL |

oot
o o oo

Hypercube tree of 16 nodes (16 = 24, so n = 4)

RE i

oot

ottt

25

Summarizing thoughts...

- Let’s consider crossbar again:
— A communication link between every switch...

— An expensive alternative to a ring...

— Get big performance gains, but big costs as well
- Usually cost scales by the square of the number of nodes

- High costs led designers to invent “things in between”

— In other words, topologies between the cost of rings and
the performance of fully connected networks

- Whether or not a topology is “good” typically depends
on the situation

- For on-chip MPPs, grids, tori, etc. are popular

26

DISCUSSION:
PARTS AND PERFORMANCE
OF AN ON-CHIP NETWORK

A 64-CORE CASE STUDY

28

NW topologies

CEA"\(\
(o (o oy o oy i =
nolalaloialolol ét)
L T I Y I I
jimlinlinliniin]in]ln
. ,1»{ l“l]0' .]»[]01 . ,(-i
. ;»[A 4 1 . th
IR T T T R N S Er
jinjinjinjiniinliniin t
LI R T TR S S
ngaigigioigicgIn (.
0“00.,04)0
1gggogod U
~ (a) Mesh (b) Torus
s
* y = P
’ =F1:
w -
= :'i
e o) B
(a) Mesh/\I%hX2 (b) Torus

(¢) CMesh

(¢) CMesh/CMeshX2

(VRN O e
\\---”"

-
3
.‘----
(¥ ~

Figure 8: Network Topologies

G G
113 :
Lt et -
> ; -«
T e) L.
it] 2 .
(d) FTree (e) FClos

Figure 9: Placement of Routers used to Estimate Area (Lower Left Quadrant)

29

Power (W)
S = N W A WL N N 00 O
| |

[E—
-

Memory

CMeshX2 Torus MeshX2 FClos FTree

(c) Network Power Dissipation

M Switch -
M Channels

30

)
o

[—
o0

[S—
(@)}

L -
co © N B

Area-Delay (mm” x cycles / 10°)

CMeshX2 Torus MeshX2 FClos

(d) Area Delay Metric

FTree

31

Pt et N N
o W o W

Energy-Delay (mJ x cycles / 10%

W

1

CMeshX2 Torus MeshX2 FClos FTree

(e) Energy Delay Metric

32

20 2 8 0
18
1y 18 18 15
.
(N3 ! (K3 (K3 14
g4 ﬁ 14 214 214 g4
L 12 » ; -
2 £ *12 12 a1z
T T 1 k - s k
ylo & T8 g:: x40
fas ¥ os 3 L
g E g':u t 0s gm
£ ae & 0s £a ¥ Zos
04 04 04 04 04
02 02 02 02 02
)
0o oe as 0s | 00
0 20 « o L 100 0 b1 1] & Ll wo 0 0 4 “ ™) 10 0 20 40 0 L 100 0 0 'H o0 "
Padiet Lasenxy (oyches) Pachet Laneexy (oycies) Packe: Lasarcy (cyckn) Packet Lazacy foychon) Packe: Ly (cychn)

(a) MeshX2 (b) CMeshX2 (¢) Torus (d) FTree (e) FClos

Figure 11: Workload Packet Latency Distribution for Uniform Random Traffic Pattern

33

tornado bitrev | uniform taper neighbor

—
W
F——

Packet Latency (cycles)
3
o

—
<
P ——

0 q v L L L Ll I ' ' ' 1 T T ' ' T 1 ' T Ll 1 ' T 1 L L]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Injection Rate (packets per cycle)

Figure 12: Offered Latency for CMeshX2 Network

A FINAL EXAMPLE

