

Lecture 26: Board Notes: On-chip IC NWs

PART A: Consider the following “sea” of processor cores and routers

(assume circles are processing nodes)!
(assume squares are routers)!
!
How should we connect different elements?!
Can any topology be implemented on-chip?!
What does a router do?!
What’s the overhead of traversing a router?!
How do we calculate message latency?!
…!

1! 2! 3! 4!

5! 6! 7! 8!

9! 10! 11! 12!

13! 14! 15! 16!

Let’s look inside of a router first…

Router has 2 main components:

1. Datapath:
o Handles storage and movement of a packet’s payload
o Consists of input buffers, switch, & output buffers

2. Control
o Logic to coordinate packet resource allocation

I’m going to talk about a “Virtual Channel Router” –not yet explicitly discussed…
- Virtual channel router requires extra resources (HW), but can help overcome blocking issues

o (Remember blocking issues with wormhole routing)
o (VC allows packets to pass a blocked packet and make better use of idle bandwidth)

Example:
1. Packet B enters node #1 from the network; B acquires channel p from node #1 à node #2
2. A 2nd packet A has entered node #1 from the wst and needs to be routed east to node #3
3. Meanwhile, B wants to leave node #2 and go south, but is blocked
4. Now channels p and q are idle .. but cannot be used

a. Packet A is blocked in node #1
b. It cannot acquire channel p
c. B blocks

See figure:

Now, assume 2 VCs per physical channel:

1. B arrives at node #1 and acquires the bandwidth to go to channel p
2. A arrives from the east, B tries to leave node #2 and is blocked
3. A can use free bandwidth p and goto another VC on node #2
4. Can also proceed onto node #3

This is a better use of resources
- May have 1 physical channel, but more buffers

What happens during packet routing?

1. Let’s start with a flit of a packet arriving at the input unit of a router
o Input unit consists of a flit buffers to hold arriving flits until they can be forwarded
o Input unit also maintains state of virtual channel

I: Idle
R: Routing
V: Waiting for virtual channel
A: Active

o Once packet in router, need to perform route computation to see where it goes
o Can then go to VC for allocation

2. Each head flit must advance through 4 stages of routing computation

o It’s pipelined! Assume…
o RC: Routing Computation
o VA: Virtual Channel Allocation
o SA: Switch Allocation
o ST: Switch Traversal

o Packet might move through like this:

 1 2 3 4 5 6 7
Head Flit RC VA SA ST
Body Flit 1 ** #### SA ST
Body Flit 2 #### #### SA ST
Tail Flit SA ST

o ** (second body flit arrives, waits its turn to traverse and leave the router…)

Important Points:

o tr (time through a single router) does not equal 1!
§ (more like 5 or 6 at least)

o Routing and VC allocation are per packet functions
§ Nothing for body flits to do
§ With no stalls, need 3 input buffers (for 3 flits)
§ With stalls, need # of buffers = # of packets

Outlook:
- Ultimately, issues involved in routing process discussed above + router architecture + storage

needed determine the bandwidth for the topology
o Possibilities:

§ Even though you can devise a topology for ideal performance, it may not be feasible
to implement

§ Or, 1 part may be technologically feasible (pitch) but another may not be (router or
buffer)

Why can routers be hard to implement?

Consider the following picture:

For on-chip connections, must consider mapping network to on-chip metal stack

- How would a torus be implemented?

o The “wrap around” could have a higher latency than other connections

- Looking at picture of metal routing…
1. No lines of the same color can touch (it would be an electrical short)
2. We draw 1 line, but really many (1 line for each bit)
3. Router areas are by no means insignificant!

On-chip IC NW performance:

Want to know – for a given IC NW topology – how long it takes to send a message:
- Note à initial #s in the absence of contention à a bit more on this in just a bit

Time: [(# of hops) x (time in router)] +

[time required for packet to traverse all channels] +
[serialization latency]

 (serialization latency = ceiling(length of message / bandwidth))

Assuming a 4x4 mesh network, how long does it take to send a message from node 10 to node 3?
- A flit spends in each router is 4 CCs
- It takes 1 CC for a flit to traverse a link between 2 routers
- Link bandwidth is 4 bytes
- We want to send a 50 byte message

Time: (4 hops x 4 CCs / router) + 3 CCs (from links) + ceiling(50/4) CCs
 16 + 3 + 13 = 32 CCs
 see pipetrace…
Can calculate average time it takes to send a message too…
- Average # of hops = 6.25
- Average time for packet to traverse all channels = 5.3333
- Serialization latency = 3
- Time in router = 2
- Total time: = ~20.8

PART B: Example – estimating the impact of traffic…
- Assume 1 iteration of a task takes 500 CCs to complete
- The task requires 10000 independent iterations
- We have N cores at our disposal to parallelize computation if we so choose
- The overhead with a new instantiation on a different core is as follows:

o The overhead – per iteration – is 64 CCs
§ (32 CCs to receive data and 32 CCs to get data back)

o However, for every additional core used, there is an additional 4 CC overhead per iteration
§ Thus, if 2 cores are used, the overhead is 64 CCs per iteration, if 3 cores are used,

the overhead is 68 CCs, etc.
• (This extra overhead might come from increased network traffic.)

- What number of cores leads to the best overall performance?

We can write an expression to determine execution time.

Time = (10000 / n)(500) + (10000 / n)(n – 1)(64 + 4(n – 1))
Time = (4.4 x 106 / n) + (5.6 x 105) + (4 x 104 x n)

n = 10, 11 gives lowest time

