
Lecture 27  
Programming parallel hardware"

Suggested reading:"
(see next slide)"

1"

Suggested Readings"
•  Readings"

–  H&P: Chapter 7 – especially 7.1-7.8"
–  Introduction to Parallel Computing"

•  https://computing.llnl.gov/tutorials/parallel_comp/"
–  POSIX Threads Programming"

•  https://computing.llnl.gov/tutorials/pthreads/"

2"

3"

Processor components"

vs."

Processor comparison"

University of Notre Dame!

CSE 30321 - Lecture 01 - Introduction to CSE 30321! 44!

vs.!

for i=0; i<5; i++ {!

!a = (a*b) + c;!

}!

MULT r1,r2,r3 ! # r1 ! r2*r3!

ADD r2,r1,r4 ! # r2 ! r1+r4!

110011! 000001! 000010! 000011!

001110! 000010! 000001! 000100!

or!

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"
•  Explain & articulate why modern

microprocessors now have more than
one core and how SW must adapt. "

•  Use knowledge about underlying HW
to write more efficient software"

Fundamental lesson(s)"
•  Some problems map well to parallel systems, others do

not (and demand a fast, single thread). "
•  In this lecture, we will consider what classes of

problems fall into each category"

4"

Why it’s important…"
•  If you are writing software for a multi-core processor,

and don't understand the implications / specifics of the
underlying hardware, it's possible to write some very
bad, ill-performing code."

5"

Writing (good) parallel code:"
1.  To develop parallel software, must first understand if

serial code can be parallelized…"

6"(Understand the problem)"

Example: independent array elements"
Example:"

1.  Calculations on 2D array elements"
–  Computation on each array element independent from

others"
•  Serial code:"

•  If calculation of elements is independent from one another,
problem is “embarrassingly parallel”"

–  (usually computationally intensive)"

7"

for j =1:N!
 for i=1:N!
 a(i,j) = f(i,j)!

(Understand the problem)"

Example: independent array elements"
–  Can distribute elements so

each processor owns its own
array (or subarray)"

•  This type of problem can lead to
“superlinear” speedup"

–  (Entire dataset may now fit in
cache)"

–  Parallel code might look like…"

8"(Understand the problem)"

Example: loop carried dependence"
•  (B) Calculate the numbers in a Fibonacci sequecne"

–  Fibonacci number defined by:"
•  F(n) = F(n-1) + F(n-2)"

–  Fibonacci series (1,1,2,3,5,8,13,21,…)"

–  This problem is non-parallelizable!"
•  Calculation of F(n) dependent on other calculations"
•  F(n-1) and F(n-2) cannot be calculated independently"

Part A" 9"(Understand the problem)"

Other concerns…"
•  Identify program “hotspots”"

–  Most work – i.e. in scientific or technical code – done in
just a few places"

•  Identify program bottlenecks"
–  Are there areas that are disproportionately slow?"

•  (I/O usually slows program down)"
–  Solution?"

•  Restructure program to tolerate latencies"

•  Identify other inhibitors"
–  Again, data dependence is example"

10"(Understand the problem)"

Writing (good) parallel code"
2.  Break up program into chunks of work that can be

distributed to multiple processing nodes"
–  2 types:"

•  Domain decomposition"
•  Functional decomposition"

11"

Any idea what these mean?"

(Partitioning)"

Domain decomposition"

•  Each parallel task then
works on a portion of
the data."

•  Different ways to
partition data…"

12"

Data associated with a problem is decomposed."

(Partitioning)" Part B"

Functional Decomposition"
•  Focus is on computation performed, not data

manipulated"
–  Problem decomposed according to work that is done"
–  Each task performs a portion of overall work"

13"(Partitioning)"

Functional Decomposition"
•  Lends itself well to problems that can be split into

different tasks"
–  Example: Ecosystem modeling…"

•  Each program calculates population of a given group"
•  Each group’s growth depends on that of neighbor"
•  As time progresses, each process calculates current state"

–  Can then exchange information with neighbors…"
–  …and begin again…"

14"

Question:"
Is exchange
part of parallel
operation?"

(Partitioning)"

Functional Decomposition"
–  Example: Climate modeling"

•  Each model thought of as separate task"
•  Arrows represent exchanges of data…"

–  Atmosphere model generates wind velocity data à "
"wind velocity data used by ocean model à "
"ocean model generates sea surface temperature data à "
"sea surface temperature data used by atmosphere model"

"
–  Within each model, may have embarrassingly parallel

functions, data dependencies, etc."

15"

Questions:"
1.  Do coarse grain

dependencies exist too?"
2.  Are there potential load

balancing issues to
contend with?"

(Partitioning)"

Writing (good) parallel code:"
3.  We must account for the time required for different

processing nodes to communicate."
–  (As seen from last lecture, this can increase computation

time from N to N+M)"

16"(Communication)"

Communication"
•  Some problems (programs) don’t incur excessive

communication overhead"
–  Image processing good example"

•  i.e. take every pixel and change its color"
–  No communication overhead required"

•  Most parallel programs / problems do involve tasks that
must share data with one another"
–  Could be practical (distributed memory)"
–  Could be algorithmic"

•  Changes to neighboring data has a direct effect on task’s data"
–  (e.g. heat diffusion problem to be discussed, ecosystem

modeling, etc.)"

17"(Communication)"

Communication costs"
•  Inter-task communication implies overhead"

•  Machine cycles / resources that could be used for
computation are instead…"
–  …spent packaging and transmitting data"

•  (From N cycles to N+M)"

•  Communication usually means that tasks must be
synchronized…"
–  …so 1 task may wait for another to finish its work"

•  (ecosystem modeling problem)"

•  Like a highway in a major city, only so much bandwidth
for cars that want to use it…"
–  See Lecture 26 case studies – can flood network"

18"(Communication)"

Communication"
•  Knowing which tasks must communicate with each

other is critical when writing parallel code"
–  Similarly, knowledge about communication vehicle

equally important"
•  Example:"

–  What if each of N nodes needs to send M bit message every Q
clock cycles?"

–  However, interconnection network can only support N, (M / 4) bit
messages every Q cycles…"

•  May have written correct code, but performance will suffer b/c
hardware cannot support implicit communication demands"

•  May even want to manually map problem parts to cores"
–  Idea: think about which node will talk to which…"

19"(Communication)"

Communication examples:"
•  Heat transfer problem"
•  Loop carried dependence"

20"Parts B, C"(Communication)"

Writing (good) parallel code:"
4.  When a task performs a communication operation,

some form of coordination (or synchronization) is
required with the other task(s) participating in the
communication"
–  Example:"

•  Before task can perform send, must first receive an
acknowledgment from the receiving task that it is OK to send"

–  (May not always be the case … but this is NOT useful
“computation”)"

21"(Synchronization)"

Types of synchronization"
•  Barrier"

–  Usually implies that all tasks are involved "
–  Each task performs its work until it reaches the barrier. It

then stops, or "blocks". "
–  When the last task reaches the barrier, all tasks are

synchronized. "
•  What happens from here varies."

–  Often, a serial section of work must be done. "
–  In other cases, the tasks are automatically released to continue

their work."

22"(Synchronization)"

Types of synchronization"
•  Semaphore"

–  Can involve any number of tasks"
–  Typically used to serialize (protect) access to global data

or a section of code."
–  Only one task at a time may use (own) the lock /

semaphore / flag."
•  The first task to acquire the lock "sets" it. "
•  This task can then safely (serially) access the protected data

or code. "
•  Other tasks can attempt to acquire the lock but must wait until

the task that owns the lock releases it. "

23"

Questions:"
1.  In context of CSM, DSM, why is synchronization needed?"
2.  Does synchronization demand architectural support?"

(Synchronization)"

Writing (good) parallel code:"
5.  Load balancing: keep all cores busy at all times"

–  (i.e. minimize idle time)"
•  Example:"

–  If all tasks subject to barrier synchronization, slowest
task determines overall performance:"

24"(Load balancing)"

