Lecture 27: Board Notes: Parallel Programming Examples

Consider the following binary search algorithm (a classic divide and conquer algorithm) that searches
for a value X in a sorted N-element array A and returns the index of the matched entry:

BinarySearch(A[0 .. N-1], X) {
low = 0
high = N-1

while(low <= high) {
mid = (low + high) / 2
if (A[mid] > X)
high = mid — 1
else if (A[mid] < X)
low = mid + 1
else
return mid // we've found the value

}

return -1 // value is not found

}

Question 1:
- Assume that you have Y cores on a multi-core processor to run BinarySearch
- Assuming that Y is much smaller than N, express the speed-up factor you might expect to
obtain for values of Y and N.

Answer:
- A binary search actually has very good serial performance and it is difficult to parallelize without
modifying the code (logs(N))
- Increasing Y beyond 2 or 3 would have no benefits
- At best we could...

o Oncore 1: perform the comparison between low and high
o On core 2: perform the computation for mid
o Oncore 3: perform the comparison for A[mid]

- Without additional restructuring, no speedup would occur
o ...and communication between cores is not “free”

Compare Calculate Compare
low mid high
Core 1 Core 2 Core 1
Compare
Almid]

Core 3

We are always throwing half of the array away!

(Adapted from https://computing.linl.gov/tutorials/parallel_comp/)

Note — this example deals with the fact that most problems in parallel computing will involve
communication among different tasks

Consider how one might solve a simple heat equation:
- The heat equation describes the temperature change over time given some initial temperature
distribution and boundary conditions
- As shown in the picture below, a finite differencing method is employed to solve the heat
equation numerically (i.e. approximating derivatives)

i
U x,y+1 _
Ux_.y_Ux_.y
y| [9XY | UxY | Uty +Cx.(Ux+1,y+Ux-1,y'2.UX}')
U x,y-1 + Cy) (Ux,y+1 + Ux,y-1 -2° Ux,y)
-
X
Question: What would the serial algorithm look like?
for (i=2; i < (y — 1); i++) {
for (3=2; j < (x — 1); J++) {
ulx,yl = ulx,y] +
cx * (u[J+1, i] + u[j-1, i] - 2*u[],i]) +
cy * (u[j, i+1l] + u[j, i-11 — 2*u[j,1i])

}

Question: Assuming we have 4 cores to use on this problem, how would we go about
writing parallel code?

Answer:
- We would need to partition and distribute array elements
such that they could be processed by different cores
- Given the partitioning shown at right...
o Interior elements are independent of work being
done on other cores
o Border elements do dependent on working being
done on other cores — and we must set up a
communication protocol
- Might have a MASTER process that sends information to
workers, checks for convergence, and collects results
o WORKER process calculates solution

find out if I am MASTER or WORKER

if I am MASTER
initialize array
send each WORKER starting info and subarray

do until all WORKERS converge
gather from all WORKERS convergence data
broadcast to all WORKERS convergence signal
end do

receive results from each WORKER

else if I am WORKER
receive from MASTER starting info and subarray

do until solution converged
update time
send neighbors my border info
receive from neighbors their border info

update my portion of solution array
determine if my solution has converged
send MASTER convergence data
receive from MASTER convergence signal
end do

send MASTER results

endif

find out if I am MASTER or WORKER

if I am MASTER
initialize array
send each WORKER starting info and subarray

do until all WORKERS converge
gather from all WORKERS convergence data
broadcast to all WORKERS convergence signal
end do

receive results from each WORKER

else if I am WORKER
receive from MASTER starting info and subarray

do until solution converged
update time

non-blocking send neighbors my border info
non-blocking receive neighbors border info

update interior of my portion of solution array
wait for non-blocking communication complete
update border of my portion of solution array

determine if my solution has converged
send MASTER convergence data
receive from MASTER convergence signal
end do
send MASTER results

endif

Parallelized code

Consider the following piece of C-code:

for(j=2; j<=1001; j++)
D[J] = D[J-1] + D[]-2];

Slightly more efficient code
(blocking will become more relevant when
material in next lecture packet is discussed)

The assembly code corresponding to the above fragment is as follows:

addi r10, r10, 4004
addi rx, rx, 8

Loop: Iw r1, -8(rX)
Iw r2, -4(rX)
add r3,r1,r2
SW r3, 0(rX)
addi rx,rx, 8

bne rx, r10, Loop

Assume that the above instructions have the following latencies (in CCs)

addi: 4 CC SW: 4 CC
3 CCs

Iw: 5CCs bne

add: 4 CCs

Question 1:

How many cycles does it take for all instructions in a single iteration of the above loop to execute?
(Assume pipelined and non-pipelined datapaths with perfect branch prediction...)

Answer — non pipelined...

- The first 2 instructions are executed 1 time

- The loop body is executed 1000 times

Instruction Number of times run | Number of cycles Total cycles
addi 1 4 4
addi 1 4 4
Iw 1000 5 5,000
Iw 1000 5 5,000
add 1000 4 4,000
SwW 1000 4 4,000
addi 1000 4 4,000
bne 1000 3 3,000
25,008

Answer — pipelined...

- We can apply the formula: NT + (S-1)T — as there are no dependencies that should cause stalls
o (2+1000x6)(T) + (5-1)(T)
o (6002)(T) + 4(T)

o 6006T

- In other words, 6006 cycles

This is our baseline ... now, let’s see if we can do better
- Note that the pipelined version is

Question 2:

When an instruction in a later iteration of a loop depends on a value in an earlier iteration of the same
loop, we say there is a loop-carried dependence between iterations of the loop.
- Identify the loop-carried dependencies in the above code

- Identify the dependent program variable and assembly-level registers
o (lgnore the loop counter j)

Answer:
- Array elements D[j] and D[j-1] will have loop carried dependencies
- These affect r3 in the current iteration and r4 in the next iteration

Question 3:
How can we parallelize / improve the performance of this code?

Answer:
- Hard to parallelize with loop carried dependence...
- Best approach is to unroll loop

Let’s re-write our C-code...

for(j=2; j<=1005; j+=5) {

D[]] = D[j-1] + D[]j-21;
D[j+1] = D[j] + D[j-11;
D[j+2] = D[j+1] + D[J1;
D[j+3] = D[Jj+2] + D[j+1];
D[j+4] = D[j+3] + D[j+2];

}
addi r10, r10, 4004
addi rx,rx, 8

Loop: Iw r1, -8(rX) # load d(j-2)
Iw r2, -4(rX) # load d(j-1)
add r3,r1,r2 # calculate d(j)
sw 3, 0(rX) # store d(j)
add r4,r2,r3 # calculate d(j+1)
sw r4, 0(rX) # store d(j)
add r5,r3,r4 # calculate d(j+1)
sw 5, 0(rX) # store d(j)
add r6,r4,r5 # calculate d(j+1)
sw 16, 0(rX) # store d(j)
add r7,r5,r6 # calculate d(j+1)
sw r7,0(rX) # store d(j)
addi rx, rx, 24 # update counter

bne rx, r10, Loop

Now we can calculate new times...

For the multi-cycle version...

Instruction Number of times run | Number of cycles Total cycles
addi 1 4 4
addi 1 4 4
Iw 200 5 1000
Iw 200 5 1000
add 200 4 800
SW 200 4 800
add 200 4 800
SW 200 4 800
add 200 4 800
SW 200 4 800
add 200 4 800
SW 200 4 800
add 200 4 800
SW 200 4 800
addi 200 4 800
bne 200 3 600
11,412

For the pipelined version:
- We can apply the formula: NT + (S-1)T — as there are no dependencies that should cause stalls
o (2+200x14)(T) + (5-1)(T)
o (6002)(T) + 4(T)
o 6006T
- In other words, 2806 cycles

Comparing un-rolled to non-unrolled...

Multi-cycle: 25,008 vs. 11,412: unrolled is 2.19X faster
Pipelined: 6,006 vs. 2,806: unrolled is 2.14X faster

