

Lecture 27: Board Notes: Parallel Programming Examples

Part A:
Consider the following binary search algorithm (a classic divide and conquer algorithm) that searches
for a value X in a sorted N-element array A and returns the index of the matched entry:

 BinarySearch(A[0 … N-1], X) {
 low = 0
 high = N-1

 while(low <= high) {
 mid = (low + high) / 2
 if (A[mid] > X)
 high = mid – 1
 else if (A[mid] < X)
 low = mid + 1
 else
 return mid // we’ve found the value
 }

 return -1 // value is not found
 }

Question 1:

- Assume that you have Y cores on a multi-core processor to run BinarySearch
- Assuming that Y is much smaller than N, express the speed-up factor you might expect to

obtain for values of Y and N.

Answer:

- A binary search actually has very good serial performance and it is difficult to parallelize without
modifying the code (log2(N))

- Increasing Y beyond 2 or 3 would have no benefits
- At best we could…

o On core 1: perform the comparison between low and high
o On core 2: perform the computation for mid
o On core 3: perform the comparison for A[mid]

- Without additional restructuring, no speedup would occur
o …and communication between cores is not “free”

Compare

low
 Calculate

mid
 Compare

high
Core 1 Core 2 Core 1

 Compare
A[mid]

 Core 3

We are always throwing half of the array away!

Part B:
(Adapted from https://computing.llnl.gov/tutorials/parallel_comp/)

Note – this example deals with the fact that most problems in parallel computing will involve
communication among different tasks

Consider how one might solve a simple heat equation:

- The heat equation describes the temperature change over time given some initial temperature
distribution and boundary conditions

- As shown in the picture below, a finite differencing method is employed to solve the heat
equation numerically (i.e. approximating derivatives)

Question: What would the serial algorithm look like?

for (i=2; i < (y – 1); i++) {
 for (j=2; j < (x – 1); j++) {
 u[x,y] = u[x,y] +

 cx * (u[j+1, i] + u[j-1, i] - 2*u[j,i]) +
 cy * (u[j, i+1] + u[j, i-1] – 2*u[j,i])
 }

}

Question: Assuming we have 4 cores to use on this problem, how would we go about

writing parallel code?

Answer:

- We would need to partition and distribute array elements
such that they could be processed by different cores

- Given the partitioning shown at right…
o Interior elements are independent of work being

done on other cores
o Border elements do dependent on working being

done on other cores – and we must set up a
communication protocol

- Might have a MASTER process that sends information to
workers, checks for convergence, and collects results

o WORKER process calculates solution

 Parallelized code Slightly more efficient code

(blocking will become more relevant when
material in next lecture packet is discussed)

Part C:
Consider the following piece of C-code:
 for(j=2; j<=1001; j++)
 D[j] = D[j-1] + D[j-2];

The assembly code corresponding to the above fragment is as follows:

 addi r10, r10, 4004
 addi rx, rx, 8

 Loop: lw r1, -8(rX)
 lw r2, -4(rX)
 add r3, r1, r2
 sw r3, 0(rX)
 addi rx, rx, 8
 bne rx, r10, Loop

Assume that the above instructions have the following latencies (in CCs)
 addi: 4 CC sw: 4 CC
 lw: 5 CCs bne 3 CCs

 add: 4 CCs

Question 1:
How many cycles does it take for all instructions in a single iteration of the above loop to execute?
(Assume pipelined and non-pipelined datapaths with perfect branch prediction…)

Answer – non pipelined…

- The first 2 instructions are executed 1 time
- The loop body is executed 1000 times

Instruction Number of times run Number of cycles Total cycles
addi 1 4 4
addi 1 4 4
lw 1000 5 5,000
lw 1000 5 5,000
add 1000 4 4,000
sw 1000 4 4,000
addi 1000 4 4,000
bne 1000 3 3,000
 25,008

Answer – pipelined…

- We can apply the formula: NT + (S-1)T – as there are no dependencies that should cause stalls
o (2+1000x6)(T) + (5-1)(T)
o (6002)(T) + 4(T)
o 6006T

- In other words, 6006 cycles

This is our baseline … now, let’s see if we can do better
- Note that the pipelined version is

Question 2:
When an instruction in a later iteration of a loop depends on a value in an earlier iteration of the same
loop, we say there is a loop-carried dependence between iterations of the loop.

- Identify the loop-carried dependencies in the above code
- Identify the dependent program variable and assembly-level registers

o (Ignore the loop counter j)

Answer:

- Array elements D[j] and D[j-1] will have loop carried dependencies
- These affect r3 in the current iteration and r4 in the next iteration

Question 3:
How can we parallelize / improve the performance of this code?

Answer:

- Hard to parallelize with loop carried dependence…
- Best approach is to unroll loop

Let’s re-write our C-code…

 for(j=2; j<=1005; j+=5) {
 D[j] = D[j-1] + D[j-2];
 D[j+1] = D[j] + D[j-1];
 D[j+2] = D[j+1] + D[j];
 D[j+3] = D[j+2] + D[j+1];
 D[j+4] = D[j+3] + D[j+2];
 }

 addi r10, r10, 4004
 addi rx, rx, 8

 Loop: lw r1, -8(rX) # load d(j-2)
 lw r2, -4(rX) # load d(j-1)

 add r3, r1, r2 # calculate d(j)
 sw r3, 0(rX) # store d(j)

 add r4, r2, r3 # calculate d(j+1)
 sw r4, 0(rX) # store d(j)

 add r5, r3, r4 # calculate d(j+1)
 sw r5, 0(rX) # store d(j)

 add r6, r4, r5 # calculate d(j+1)
 sw r6, 0(rX) # store d(j)

 add r7, r5, r6 # calculate d(j+1)
 sw r7, 0(rX) # store d(j)

 addi rx, rx, 24 # update counter
 bne rx, r10, Loop

Now we can calculate new times…

For the multi-cycle version…

Instruction Number of times run Number of cycles Total cycles
addi 1 4 4
addi 1 4 4
lw 200 5 1000
lw 200 5 1000
add 200 4 800
sw 200 4 800
add 200 4 800
sw 200 4 800
add 200 4 800
sw 200 4 800
add 200 4 800
sw 200 4 800
add 200 4 800
sw 200 4 800
addi 200 4 800
bne 200 3 600
 11,412

For the pipelined version:

- We can apply the formula: NT + (S-1)T – as there are no dependencies that should cause stalls
o (2+200x14)(T) + (5-1)(T)
o (6002)(T) + 4(T)
o 6006T

- In other words, 2806 cycles

Comparing un-rolled to non-unrolled…

 Multi-cycle: 25,008 vs. 11,412: unrolled is 2.19X faster
 Pipelined: 6,006 vs. 2,806: unrolled is 2.14X faster

