
 
 

Lecture 27:  Board Notes:  Parallel Programming Examples 
 
Part A: 
Consider the following binary search algorithm (a classic divide and conquer algorithm) that searches 
for a value X in a sorted N-element array A and returns the index of the matched entry: 
 
 BinarySearch(A[0 … N-1], X) { 
  low = 0 
  high = N-1 
   
  while(low <= high) { 
   mid = (low + high) / 2 
   if (A[mid] > X) 
    high = mid – 1 
   else if (A[mid] < X) 
    low = mid + 1 
   else 
    return mid   // we’ve found the value 
  } 
   
  return -1     // value is not found 
 } 
 
Question 1: 

- Assume that you have Y cores on a multi-core processor to run BinarySearch 
- Assuming that Y is much smaller than N, express the speed-up factor you might expect to 

obtain for values of Y and N. 
 
Answer: 

- A binary search actually has very good serial performance and it is difficult to parallelize without 
modifying the code (log2(N)) 

- Increasing Y beyond 2 or 3 would have no benefits 
- At best we could… 

o On core 1: perform the comparison between low and high 
o On core 2: perform the computation for mid 
o On core 3: perform the comparison for A[mid] 

- Without additional restructuring, no speedup would occur 
o …and communication between cores is not “free” 
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We are always throwing half of the array away! 
 
 
 



 
 
 
Part B: 
(Adapted from https://computing.llnl.gov/tutorials/parallel_comp/) 
 
Note – this example deals with the fact that most problems in parallel computing will involve 
communication among different tasks 
 
Consider how one might solve a simple heat equation: 

- The heat equation describes the temperature change over time given some initial temperature 
distribution and boundary conditions 

- As shown in the picture below, a finite differencing method is employed to solve the heat 
equation numerically (i.e. approximating derivatives) 

 

 
 
Question: What would the serial algorithm look like? 
  
for (i=2; i < (y – 1); i++) { 
 for (j=2; j < (x – 1); j++) { 
  u[x,y] = u[x,y] + 

    cx * (u[j+1, i] + u[j-1, i] - 2*u[j,i]) +        
    cy * (u[j, i+1] + u[j, i-1] – 2*u[j,i])  
 } 

} 
 
Question:  Assuming we have 4 cores to use on this problem, how would we go about 

writing parallel code? 
 
Answer: 

- We would need to partition and distribute array elements 
such that they could be processed by different cores 

- Given the partitioning shown at right… 
o Interior elements are independent of work being 

done on other cores 
o Border elements do dependent on working being 

done on other cores – and we must set up a 
communication protocol 

- Might have a MASTER process that sends information to 
workers, checks for convergence, and collects results 

o WORKER process calculates solution 
 



 
 
 

 
 
 Parallelized code         Slightly more efficient code   

(blocking will become more relevant when      
material in next lecture packet is discussed) 
   

Part C: 
Consider the following piece of C-code:  
 for(j=2; j<=1001; j++) 
  D[j] = D[j-1] + D[j-2];  
 
The assembly code corresponding to the above fragment is as follows:  

 addi r10, r10, 4004 
 addi rx, rx, 8 

 Loop: lw r1, -8(rX) 
  lw r2, -4(rX) 
  add r3, r1, r2 
  sw r3, 0(rX) 
  addi rx, rx, 8 
  bne rx, r10, Loop  
 
Assume that the above instructions have the following latencies (in CCs)  
  addi: 4 CC  sw: 4 CC 
  lw: 5 CCs  bne 3 CCs 



 
 
  add: 4 CCs 
 
Question 1: 
How many cycles does it take for all instructions in a single iteration of the above loop to execute? 
(Assume pipelined and non-pipelined datapaths with perfect branch prediction…) 
 
Answer – non pipelined… 

- The first 2 instructions are executed 1 time 
- The loop body is executed 1000 times 

 
Instruction Number of times run Number of cycles Total cycles 
addi 1 4 4 
addi 1 4 4 
lw 1000 5 5,000 
lw 1000 5 5,000 
add 1000 4 4,000 
sw 1000 4 4,000 
addi 1000 4 4,000 
bne 1000 3 3,000 
   25,008 

 
Answer – pipelined… 

- We can apply the formula:  NT + (S-1)T – as there are no dependencies that should cause stalls 
o (2+1000x6)(T) + (5-1)(T) 
o (6002)(T) + 4(T) 
o 6006T 

- In other words, 6006 cycles 
 
This is our baseline … now, let’s see if we can do better 
- Note that the pipelined version is  
 
 
Question 2: 
When an instruction in a later iteration of a loop depends on a value in an earlier iteration of the same 
loop, we say there is a loop-carried dependence between iterations of the loop. 

- Identify the loop-carried dependencies in the above code 
- Identify the dependent program variable and assembly-level registers 

o (Ignore the loop counter j) 
 
Answer: 

- Array elements D[j] and D[j-1] will have loop carried dependencies 
- These affect r3 in the current iteration and r4 in the next iteration 

 
 
 
 
 
 
 



 
 
 
 
 
Question 3: 
How can we parallelize / improve the performance of this code? 
 
Answer: 

- Hard to parallelize with loop carried dependence… 
- Best approach is to unroll loop 

 
Let’s re-write our C-code… 
 
 for(j=2; j<=1005; j+=5) { 
  D[j]   = D[j-1] + D[j-2]; 
  D[j+1] = D[j] + D[j-1]; 
  D[j+2]  = D[j+1] + D[j]; 
  D[j+3] = D[j+2] + D[j+1]; 
  D[j+4] = D[j+3] + D[j+2]; 
 } 
 

 addi r10, r10, 4004 
 addi rx, rx, 8 
 

 Loop: lw r1, -8(rX)  # load d(j-2) 
  lw r2, -4(rX)  # load d(j-1) 
 
  add r3, r1, r2  # calculate d(j) 
  sw r3, 0(rX)  # store d(j) 
 
  add r4, r2, r3  # calculate d(j+1) 
  sw r4, 0(rX)  # store d(j) 
 
  add r5, r3, r4  # calculate d(j+1) 
  sw r5, 0(rX)  # store d(j) 
 
  add r6, r4, r5  # calculate d(j+1) 
  sw r6, 0(rX)  # store d(j) 
 
  add r7, r5, r6  # calculate d(j+1) 
  sw r7, 0(rX)  # store d(j) 
 
  addi rx, rx, 24  # update counter 
  bne rx, r10, Loop 
 
 
 
 
 
 
 



 
 
 
 
 
 
Now we can calculate new times… 
 
For the multi-cycle version… 
 
Instruction Number of times run Number of cycles Total cycles 
addi 1 4 4 
addi 1 4 4 
lw 200 5 1000 
lw 200 5 1000 
add 200 4 800 
sw 200 4 800 
add 200 4 800 
sw 200 4 800 
add 200 4 800 
sw 200 4 800 
add 200 4 800 
sw 200 4 800 
add 200 4 800 
sw 200 4 800 
addi 200 4 800 
bne 200 3 600 
   11,412 
 
For the pipelined version: 

- We can apply the formula:  NT + (S-1)T – as there are no dependencies that should cause stalls 
o (2+200x14)(T) + (5-1)(T) 
o (6002)(T) + 4(T) 
o 6006T 

- In other words, 2806 cycles 
 
Comparing un-rolled to non-unrolled… 
 
 Multi-cycle: 25,008 vs. 11,412: unrolled is 2.19X faster 
 Pipelined: 6,006 vs. 2,806: unrolled is 2.14X faster 


