Lecture 28
Multicore, Multithread

Suggested reading:
(H&P Chapter 7.4)

Fundamental lesson(s)

+ Some problems map well to parallel systems, others do
not (and demand a fast, single thread).

* In this lecture, we will consider what classes of
problems fall into each category

Multicore processors
and programming

Athlon~

Goal: Explain and articulate why modern
microprocessors now have more than
one core and how software must adapt to
accommodate the now prevalent multi-
core approach to computing.

—
‘ for i=0; i<5; i++ {

}

a = (a*b) + c;

MULT r1,r2,r3 #r1 € r2*r3
ADD r2,r1,r4 J, #12 € ri4rd

110011

000001

000010

000011

001110

000010

000001

000100

Why it’s important...

+ If you are writing software for a multi-core processor,
and don't understand the implications / specifics of the
underlying hardware, it's possible to write some very

bad, ill-performing code.

REMINDER: WHY MULTICORE?

Moore’s Law

- “Cramming more components onto integrated circuits.”
- G.E. Moore, Electronics 1965

— Observation: DRAM transistor density doubles annually
- Became known as “Moore’s Law™
+ Actually, a bit off:
— Density doubles every 18 months (now more like 24)
— (in 1965 they only had 4 data points!)
— Corollaries:
(. Cost per transistor halves annually (18 months)
+ Power per transistor decreases with scaling
- Speed increases with scaling

— Of course, it depends on how small you try to make things
» (l.e. no exponential lasts forever)

|
L Remember these!)

Transistors used to manipulate/store 1s & 0s

Switch-level representation Cross-sectional view

NMOS

0 1 €
V) ‘I O) V) ‘I <> e

n-type subsirate
(Body)

Oxide (Si02)

Channel
region

Drain region

(can act as a capacitor storing charge)

Using above diagrams as context, note that if we (i) apply a
suitable voltage to the gate & (ii) then apply a suitable voltage
between source and drain, current will flow.

Previous Industry Projections

YEAR 2004 2007 2010 2013 2016

TECHNOLOGY 90 nm 65 nm 45 nm 32 nm 22 nm

CHIP SIZE 550 mm’ 550 mnf 550 mm? 550 mm’ 550 mnf

NUMBER OF

T:ANS STOORS 553 M 1 Billion 2 Billion 4.5 Billion 8.5 Billion

(LOGIC)

DRAM . ~hite .

CAPACITY 1.0 Gbits 2.0 Gbits 4.3 Gbits 8.5 Goits 35 Gbits
— — — — — — — \

MAXIMUM s1cHz N 93cHz 15 GHz 23 GHz 40 GHz

CLOCK

MINIMUM

SUPPLY 09V 08V 0.7V 06V 05V

VOLTAGE

MAXIMUM

POWER 150 W 190W 200W 200w 200W

DISSIPATION

MAXIMUM -

NUMBER OF 3000 4000 4000 5300 7000

IO PINS

A funny thing happened on the way to 45 nm A funny thing happened on the way to 45 nm

[*Speed increases with scaling...] [*Power decreases with scaling...]
100,000 7 # . 100000 Technology
7 - & 2 500 350 250180 130 9 65 45 2 Node {nm)
N O 100 —
10,000 N o‘q‘/ e 10000
o) o g e SN ¥
z S ach S ptacHz z .
3 1,000 '\0\/”{5;-0 o5 43 1000 § é 1
5 gl i 3 3
100 o7 22' b 100 3
.{. :,:.. .V.: £ 29 E 001
/e 2% S
10 * 10
1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 410000 1000 100 10
® [TRS Max Clock Rt (12 imwriors, Feature Size 0@1
o Hstorial ® (TR Max | Static Power
(leakage)
2005 projection was for 5.2 GHz - and we didn’t make it in 0.0000001
. ’ . . . 1990 1985 2000 2005 2010 2015 2020
production. Further, we’re still stuck at 3+ GHz in production.
A bit on device performance... Summary of relationships

(+) If Vincreases, speed (performance) increases
(-) If Vincreases, power (heat) increases
(+) If L decreases, speed (performance) increases

+ One way to think about switching time:
— Charge is carried by electrons
— Time for charge to cross channel = length/speed

« =12 .
= L¥(mVas) \ Thus, to make a device + (?) If L decreases, power (heat) does what?
faster, we want to either ;
What about Le. heat)? increase Vs or decrease — P could improve because of lower C
ata o.u powet: (i.e. heat)? , feature sizes (i.e. L) — P could increase because >> # of devices switch
~ Dynamic power is: Payn = C1Vad™fo- — P could increase because >> # of devices switch faster!
* CL=(eoxWL)d
— eox = dielectric, WL = parallel plate area, d = distance between .
: Need to carefully consider tradeoffs between

gate and substrate

speed and heat

A funny thing happened on the way to 45 nm

*Speed increases with scaling...
*Power decreases with scaling...

Why the clock flattening? POWER!!!!

1000

100 R
A ‘e

Watts per Die

.
1976 1986 1996 2006

Threads First

« Qutline of Threads discussion:

— What’s a thread?
+ How many people have heard of / used threads before?

— Coupling to architecture
— Example: scheduling threads
+ Assume different architectural models
— Programming models
— Why intimate knowledge about HW is important

(Short term?) Solution

» Processor complexity is good enough

* Transistor sizes can still scale

« Slow processors down to manage power
* Get performance from...

Parallelism

(i.e. 1 processor, 1 ns clock cycle
vs.
2 processors, 2 ns clock cycle)

Processes vs. Threads

- Process * Thread
— Created by OS — Can exist within process
— Much “overhead” — Shares process

+ Process ID resources
+ Process group ID — Duplicate bare
- User ID essentials to execute

code on chip
+ Program counter

+ Working directory
+ Program instructions

- Registers + Stack pointer
- Stack space Registers
* Heap + Scheduling priority

« File descriptors + Set of pending, blocked

» Shared libraries signals
+ Shared memory + Thread specific data

- Semaphores, pipes, etc.

Processes vs. Threads Multi-threading

*+ ldea:
— Performing multiple threads of execution in parallel
+ Replicate registers, PC, etc.
— Fast switching between threads
* Flavors:
— Fine-grain multithreading
+ Switch threads after each cycle
text "z”;:; + Interleave instruction execution
+ If one thread stalls, others are executed
— Coarse-grain multithreading
« Only switch on long stall (e.g., L2-cache miss)

- Simplifies hardware, but doesn’t hide short stalls
— (e.g., data hazards)

— SMT (Simultaneous Multi-Threading)
- Especially relevant for superscalar

User Address Space
User Address Space

Thread 2 | routine2() varl —|

stack var2
var3

stack routinel varl() ||
var2()

Thread 1 | routinel() varl —f
text main() stack var2

routinel ()
routine2()

data arrayA
arrayB

heap arraya

arrayB

Coarse MT vs. Fine MT vs. SMT Mixed Models:

| | —_— N
e meads TheadG ThreadD . Threadeq systems _and multll-threaded programs are
=l ==l EEN not specific to multi-core chips.
Time AN] — In other words, could imagine a multi-threaded uni-
[|] [| [[]
l EEEE W = y processor to::l..h . _—
EEEE EEE owever, cou a_ve an N-core chip wnere:
== — ... N threads of a single process are run on N cores

[|
HEN — ... N processes run on N cores — and each core splits
time between M threads

Issue slots —
Coarse MT Fine MT

[}
<
3

Time HE | 1 I I |
|| [1 | | HEEN
HENR HEE HEN
HE | 1 | I |
HEEE B]

[1 | | 1 I
g = -
HEEN
| HEE]
| [|

Comparison: multi-core vs SMT

Multi-core:

— Since there are several cores,
each is smaller and not as powerful
(but also easier to design and manufacture)

— However, great with thread-level parallelism
SMT

— Can have one large and fast superscalar core
— Great performance on a single thread

— Mostly still only exploits instruction-level
parallelism

Real life examples...
Designs with private L2 caches

memory

memory

Both L1 and L2 are private

A design with L3 caches
Examples: AMD Opteron,

Or can do both...

hyper-threads

Dual-core
Intel Xeon processors

 Each core is
hyper-threaded
L2 cache
* Private L1 caches
memory
e Shared L2 caches

Writing threaded programs for
supporting HW

+ For UNIX systems, a standardized, C-language
threads programming interface has been specified
by the IEEE - POSIX threads (or Pthreads)

+ For a program to take advantage of Pthreads...

— Should be capable of being organized into discrete,
independent tasks which can execute concurrently

24

Writing threaded programs for
supporting HW

For UNIX systems, a standardized, C-language
threads programming interface has been specified
by the IEEE - POSIX threads (or Pthreads)

For a program to take advantage of Pthreads...

— Should be capable of being organized into discrete,
independent tasks which can execute concurrently

25

Impact of modern processing principles
(Lots of “state”)

User:

— state used for application execution

Supervisor:

— state used to manage user state

Machine:

— state that configures the system
Transient:

— state used during instruction execution
Access-Enhancing:

— state used to simplify translation of other state names
Latency-Enhancing:

— state used to reduce latency to other state values

Writing threaded programs for
supporting HW

...but generally, programs that have the following
characteristics are well-suited for Pthreads:

— Work that can be executed OR data that can be operated on
multiple tasks at the same time

Have sections that will block and experience long I/0 waits

+ i.e. while 1 thread is waiting for I/O system call to complete,
CPU intensive work can be performed by other threads

Use many CPU cycles in some places, but not others
Must respond to asynchronous events

* i.e. a web server can transfer data from previous requests
and manage arrival of new requests

Some work is more important than others (priority interrupts)

26

Impact of modern processing principles
(Total state vs. time)

100,000.00
2 10,000.00 - t)
Q .«((‘f&/‘
AN
% 1;000-00 Q»@\’e \J?/// Hmmm.“
® 100.00 3 &0}\“ z
2 10.00 w8 LT N
’ Y Py ! -
3 .- 8
© 100 «\ N - v
2 100 o~ — i i
u, 0.10 =
w M /
0.01
1970 1980 1990 2000

—e— Total State —a=— Machine

User —«— Transient

—a— Supenvisor
—s— Latency Enhancing

—+— Access Enhancing

