

Lecture 28 Multicore, Multithread

Suggested reading: (H&P Chapter 7.4)

Fundamental lesson(s)

- Some problems map well to parallel systems, others do not (and demand a fast, single thread).
- In this lecture, we will consider what classes of problems fall into each category

Why it's important...

 If you are writing software for a multi-core processor, and don't understand the implications / specifics of the underlying hardware, it's possible to write some very bad, ill-performing code.

Transistors used to manipulate/store 1s & 0s

Switch-level representation

Cross-sectional view

REMINDER: WHY MULTICORE?

Using above diagrams as context, note that if we (i) apply a suitable voltage to the gate & (ii) then apply a suitable voltage between source and drain, current will flow.

Moore's Law

"Cramming more components onto integrated circuits."

- G.E. Moore, Electronics 1965

- Observation: DRAM transistor density doubles annually
 - Became known as "Moore's Law"
 - Actually, a bit off:
 - Density doubles every 18 months (now more like 24)
 - (in 1965 they only had 4 data points!)
- Corollaries:
 - Cost per transistor halves annually (18 months)
 - · Power per transistor decreases with scaling
 - Speed increases with scaling
 - Of course, it depends on how small you try to make things
 - » (I.e. no exponential lasts forever)

Remember these!

Previous Industry Projections

YEAR	2004	2007	2010	2013	2016
TECHNOLOGY	90 nm	65 nm	45 nm	32 nm	22 nm
CHIP SIZE	550 mm ²				
NUMBER OF TRANSISTORS (LOGIC)	553 M	1 Billion	2 Billion	4.5 Billion	8.5 Billion
DRAM CAPACITY	1.0 Gbits	2.0 Gbits	4.3 Gbits	8.5 Gbits	35 Gbits
MAXIMUM CLOCK FREQUENCY	4.1 GHz	9.3 GHz	15 GHz	23 GHz	40 GHz
MINIMUM SUPPLY VOLTAGE	0.9 V	0.8 V	0.7 V	0.6 V	0.5 V
MAXIMUM POWER DISSIPATION	150 W	190 W	200 W	200 W	200 W
MAXIMUM NUMBER OF I/O PINS	3000	4000	4000	5300	7000

5

2005 projection was for 5.2 GHz - and we didn't make it in production. Further, we're still stuck at 3+ GHz in production.

A bit on device performance...

- One way to think about switching time:
 - Charge is carried by electrons
 - Time for charge to cross channel = length/speed
 - = L²/(mV_{ds})

Thus, to make a device faster, we want to either increase Vds or decrease feature sizes (i.e. L)

- What about power (i.e. heat)?
 - <u>Dynamic</u> power is: $P_{dyn} = C_L V_{dd}^2 f_{0-1}$
 - $C_L = (e_{ox}WL)/d$

- e_{ox} = dielectric, WL = parallel plate area, d = distance between gate and substrate

A funny thing happened on the way to 45 nm

Summary of relationships

- (+) If V increases, speed (performance) increases
- (-) If V increases, power (heat) increases
- (+) If L decreases, speed (performance) increases
- (?) If L decreases, power (heat) does what?
 - P could improve because of lower C
 - P could increase because >> # of devices switch
 - P could increase because >> # of devices switch faster!

Need to carefully consider tradeoffs between speed and heat

A funny thing happened on the way to 45 nm

- •Speed increases with scaling...
- •Power decreases with scaling...

Why the clock flattening? POWER!!!!

Threads First

- Outline of Threads discussion:
 - What's a thread?
 - How many people have heard of / used threads before?
 - Coupling to architecture
 - Example: scheduling threads
 - Assume different architectural models
 - Programming models
 - Why intimate knowledge about HW is important

(Short term?) Solution

High art meets high-tech.

Lincoin's latest project, titled "CUBE," is a 10' x 10' translucent structure outfitted with video cameras, unquely combining sculpture, portraiture and architecture. With Instit² Cambrid precesses technology radies, a cubicolo becomes many cher things as well — portable studio, cames, impiration tool. **Top 5 Must-Naves**

POWERFUL PROCESSOR A portrait of performance. "My gene

Processor in my laplace, as they confined at any or anapulate video, " says Linco Transitudy, the deal-every performance of Intel Centrino processor technolo can handle intensive tasks with Nylog colors. DICENTING TRANSFER SPEEDS Art (at 30 frames per accould, Data transferring up to 20% faster¹

Art (at 30 frames per second). Data transferring up to 20% faster allows Lincoln to store footage from 24 video cameras with lightning HI0H-SPEED WIRELESS -Always Connected. With up to twice the range and 5x the speed who

Connected to a Wireless New Jow environment of the series and download musi or shop for art books anywhere, anytime. INANANCED VIDEO Nieb-edf (redefined). Lincoln can view his generative portraits with "a

High-def (redefined). Lincoln can view his generative portraits with "galler; Uke" clarity, thanks to atunning multimedia performance, for a super-enhihigh-def video.axgeriance.

The power of art. Lincoln's infinitely re-

presented on a plasma screen powered by his computer — so wasting power is not an option. Thanks to **intel's exclusive power-seving features**, he conserves energy by using it only when he needs it.

- Processor complexity is good enough
- Transistor sizes can still scale
- Slow processors down to manage power
- Get performance from...

Parallelism

Top 5 Must-Haves

POWERFUL PROCESSOR

A portrait of performance. "My generative portraits are demanding on the processors in my laptop, as they continuously manipulate video," says Lincoln. Thankfully, the **dual-core performance** of Intel Centrino processor technology can handle intensive tasks with flying colors.

(i.e. 1 processor, 1 ns clock cycle vs. 2 processors, 2 ns clock cycle)

Processes vs. Threads

- Process
 - Created by OS
 - Much "overhead"
 - Process ID
 - Process group ID
 - User ID
 - Working directory
 - Program instructions
 - Registers
 - Stack space
 - Heap
 - File descriptors
 - Shared libraries
 - Shared memory
 - · Semaphores, pipes, etc.

- Thread
 - Can exist within process
 - Shares process resources
 - Duplicate bare essentials to execute code on chip
 - Program counter
 - Stack pointer
 - Registers
 - Scheduling priority
 - Set of pending, blocked signals
 - Thread specific data

Processes vs. Threads

Coarse MT vs. Fine MT vs. SMT

Multi-threading

- Idea:
 - Performing multiple threads of execution in parallel
 - Replicate registers, PC, etc.
 - Fast switching between threads
- Flavors:
 - Fine-grain multithreading
 - Switch threads after each cycle
 - Interleave instruction execution
 - · If one thread stalls, others are executed
 - Coarse-grain multithreading
 - Only switch on long stall (e.g., L2-cache miss)
 - Simplifies hardware, but doesn't hide short stalls
 (e.g., data hazards)

- SMT (Simultaneous Multi-Threading)

Especially relevant for superscalar

Mixed Models:

- Threaded systems and multi-threaded programs are not specific to multi-core chips.
 - In other words, could imagine a multi-threaded uniprocessor too...
- However, could have an N-core chip where:
 - ... N threads of a single process are run on N cores
 - ... N processes run on N cores and each core splits time between M threads

Comparison: multi-core vs SMT

- Multi-core:
 - Since there are several cores, each is smaller and not as powerful (but also easier to design and manufacture)
 - However, great with thread-level parallelism
- SMT
 - Can have one large and fast superscalar core
 - Great performance on a single thread
 - Mostly still only exploits instruction-level parallelism

- Dual-core Intel Xeon processors
- Each core is hyper-threaded
- Private L1 caches
- · Shared L2 caches

Real life examples...

Designs with private L2 caches

Both L1 and L2 are private

Examples: AMD Opteron, AMD Athlon, Intel Pentium D A design with L3 caches

Example: Intel Itanium 2

Writing threaded programs for supporting HW

 For UNIX systems, a standardized, C-language threads programming interface has been specified by the IEEE – POSIX threads (or Pthreads)

Or can do both...

- For a program to take advantage of Pthreads...
 - Should be capable of being organized into discrete, independent tasks which can execute concurrently

Writing threaded programs for supporting HW

- For UNIX systems, a standardized, C-language threads programming interface has been specified by the IEEE – POSIX threads (or Pthreads)
- For a program to take advantage of Pthreads...
 - Should be capable of being organized into discrete, independent tasks which can execute concurrently

Writing threaded programs for supporting HW

- ...but generally, programs that have the following characteristics are well-suited for Pthreads:
 - Work that can be executed OR data that can be operated on multiple tasks at the same time
 - Have sections that will block and experience long I/O waits
 - i.e. while 1 thread is waiting for I/O system call to complete, CPU intensive work can be performed by other threads
 - Use many CPU cycles in some places, but not others
 - Must respond to asynchronous events
 - i.e. a web server can transfer data from previous requests and manage arrival of new requests
 - Some work is more important than others (priority interrupts)

25

Impact of modern processing principles (Lots of "state")

- User:
 - state used for application execution
- Supervisor:
 - state used to manage user state
- Machine:
 - state that configures the system
- Transient:
 - state used during instruction execution
- Access-Enhancing:
 - state used to simplify translation of other state names
- Latency-Enhancing:
 - state used to reduce latency to other state values

Impact of modern processing principles (Total state vs. time)

