
Lecture 28  
Multicore, Multithread"

Suggested reading:"
(H&P Chapter 7.4)"

1" 2"

Processor components"

vs."

Processor comparison"

University of Notre Dame!

CSE 30321 - Lecture 01 - Introduction to CSE 30321! 44!

vs.!

for i=0; i<5; i++ {!

!a = (a*b) + c;!

}!

MULT r1,r2,r3 ! # r1 ! r2*r3!

ADD r2,r1,r4 ! # r2 ! r1+r4!

110011! 000001! 000010! 000011!

001110! 000010! 000001! 000100!

or!

HLL code translation"The right HW for the
right application"

Writing more "
efficient code"

Multicore processors
and programming"

CSE 30321"
Goal: Explain and articulate why modern
microprocessors now have more than
one core and how software must adapt to
accommodate the now prevalent multi-
core approach to computing. !

Fundamental lesson(s)"
•  Some problems map well to parallel systems, others do

not (and demand a fast, single thread). "
•  In this lecture, we will consider what classes of

problems fall into each category"

3"

Why it’s important…"
•  If you are writing software for a multi-core processor,

and don't understand the implications / specifics of the
underlying hardware, it's possible to write some very
bad, ill-performing code."

4"

REMINDER: WHY MULTICORE?"

5" 6"

Transistors used to manipulate/store 1s & 0s"

0
(0V)

1
(5V)

NMOS"

Switch-level representation" Cross-sectional view"

(can act as a capacitor storing charge)"

Using above diagrams as context, note that if we (i) apply a
suitable voltage to the gate & (ii) then apply a suitable voltage

between source and drain, current will flow."

7"

Remember these!"

Moore’s Law"
•  “Cramming more components onto integrated circuits.”"
" " " " " "- G.E. Moore, Electronics 1965"

–  Observation: DRAM transistor density doubles annually"
•  Became known as “Moore’s Law”"
•  Actually, a bit off:"

–  Density doubles every 18 months (now more like 24)"
–  (in 1965 they only had 4 data points!)"

–  Corollaries:"
•  Cost per transistor halves annually (18 months)"
•  Power per transistor decreases with scaling"
•  Speed increases with scaling"

–  Of course, it depends on how small you try to make things"
»  (I.e. no exponential lasts forever)"

8"

Previous Industry Projections"

9"

A funny thing happened on the way to 45 nm"

• Speed increases with scaling..."

2005 projection was for 5.2 GHz - and we didn’t make it in
production. Further, we’re still stuck at 3+ GHz in production."

10"

A funny thing happened on the way to 45 nm"

• Power decreases with scaling..."

11"

A bit on device performance..."
•  One way to think about switching time:"

–  Charge is carried by electrons"
–  Time for charge to cross channel = length/speed"

•  = L2/(mVds)"
"

•  What about power (i.e. heat)?"
–  Dynamic power is:" Pdyn = CLVdd2f0-1"

•  CL = (eoxWL)/d"
–  eox = dielectric, WL = parallel plate area, d = distance between

gate and substrate"

Thus, to make a device
faster, we want to either
increase Vds or decrease

feature sizes (i.e. L)"

Summary of relationships"
•  (+) "If V increases, speed (performance) increases"
•  (-) "If V increases, power (heat) increases"
•  (+)"If L decreases, speed (performance) increases"
•  (?)"If L decreases, power (heat) does what?"

–  P could improve because of lower C"
–  P could increase because >> # of devices switch"
–  P could increase because >> # of devices switch faster!"

12"

Need to carefully consider tradeoffs between
speed and heat"

13"

A funny thing happened on the way to 45 nm"

• Speed increases with scaling..."
• Power decreases with scaling..."

Why the clock flattening? POWER!!!!"

14"

•  Processor complexity is good enough"
•  Transistor sizes can still scale"
•  Slow processors down to manage power"
•  Get performance from..."

Parallelism"

(i.e. 1 processor, 1 ns clock cycle"
vs."

2 processors, 2 ns clock cycle)"

(Short term?) Solution"

Threads First"
•  Outline of Threads discussion:"

–  What’s a thread?"
•  How many people have heard of / used threads before?"

–  Coupling to architecture"
–  Example: scheduling threads"

•  Assume different architectural models"
–  Programming models"
–  Why intimate knowledge about HW is important"

15"

Processes vs. Threads"
•  Process"

–  Created by OS"
–  Much “overhead”"

•  Process ID"
•  Process group ID"
•  User ID"
•  Working directory"
•  Program instructions"
•  Registers"
•  Stack space"
•  Heap"
•  File descriptors"
•  Shared libraries"
•  Shared memory"
•  Semaphores, pipes, etc."

•  Thread"
–  Can exist within process"
–  Shares process

resources"
–  Duplicate bare

essentials to execute
code on chip"

•  Program counter"
•  Stack pointer"
•  Registers"
•  Scheduling priority"
•  Set of pending, blocked

signals"
•  Thread specific data"

16"

Processes vs. Threads"

17"Parts A,B"

Multi-threading"
•  Idea:"

–  Performing multiple threads of execution in parallel"
•  Replicate registers, PC, etc."

–  Fast switching between threads"
•  Flavors:"

–  Fine-grain multithreading"
•  Switch threads after each cycle"
•  Interleave instruction execution"
•  If one thread stalls, others are executed"

–  Coarse-grain multithreading"
•  Only switch on long stall (e.g., L2-cache miss)"
•  Simplifies hardware, but doesn’t hide short stalls"

–  (e.g., data hazards)"
–  SMT (Simultaneous Multi-Threading)"

•  Especially relevant for superscalar"
Parts C—F"

Coarse MT vs. Fine MT vs. SMT" Mixed Models:"
•  Threaded systems and multi-threaded programs are

not specific to multi-core chips."
–  In other words, could imagine a multi-threaded uni-

processor too…"
•  However, could have an N-core chip where:"

–  … N threads of a single process are run on N cores"
–  … N processes run on N cores – and each core splits

time between M threads"

20"

Or can do both…"

Real life examples…"
Writing threaded programs for
supporting HW"
•  For UNIX systems, a standardized, C-language

threads programming interface has been specified
by the IEEE – POSIX threads (or Pthreads)"

•  For a program to take advantage of Pthreads…"
–  Should be capable of being organized into discrete,

independent tasks which can execute concurrently"

24"

Writing threaded programs for
supporting HW"
•  For UNIX systems, a standardized, C-language

threads programming interface has been specified
by the IEEE – POSIX threads (or Pthreads)"

•  For a program to take advantage of Pthreads…"
–  Should be capable of being organized into discrete,

independent tasks which can execute concurrently"

25"

Writing threaded programs for
supporting HW"
•  …but generally, programs that have the following

characteristics are well-suited for Pthreads:"
–  Work that can be executed OR data that can be operated on

multiple tasks at the same time"
–  Have sections that will block and experience long I/O waits"

•  i.e. while 1 thread is waiting for I/O system call to complete,
CPU intensive work can be performed by other threads"

–  Use many CPU cycles in some places, but not others"
–  Must respond to asynchronous events"

•  i.e. a web server can transfer data from previous requests
and manage arrival of new requests"

–  Some work is more important than others (priority interrupts)"

26"

Impact of modern processing principles  
(Lots of “state”)"
•  User: "

–  state used for application execution"
•  Supervisor: "

–  state used to manage user state"
•  Machine: "

–  state that configures the system"
•  Transient: "

–  state used during instruction execution"
•  Access-Enhancing: "

–  state used to simplify translation of other state names"
•  Latency-Enhancing: "

–  state used to reduce latency to other state values"

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100,000.00

1970 1980 1990 2000

Es
tim

at
ed

 S
ta

te
 (k

 b
its

)

Total State Machine Supervisor

User Transient Latency Enhancing

Access Enhancing

Impact of modern processing principles  
(Total state vs. time)"

Hmmm…!

