
Lecture 29  
Review"

Suggested reading:"
Everything"
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Q1: D[8] = D[8] + RF[1] + RF[4]"
              …"
" "I[15]:  Add   R2, R1,  R4                           RF[1] = 4"
" "I[16]:  MOV R3, 8                                      RF[4] = 5"
" "I[17]:  Add   R2, R2, R3                            D[8] = 7"

              …"
"
"
"

(n+1) 
Fetch 
PC=15 
IR=xxxx 

(n+2) 
Decode 
PC=16 
IR=2214h 

(n+3) 
Execute 
PC=16 
IR=2214h 
RF[2]= 
     xxxxh 

(n+4) 
Fetch 
PC=16 
IR=2214h 
RF[2]= 
  0009h 

(n+5) 
Decode 
PC=17 
IR=0308h 

(n+6) 
Execute 
PC=17 
IR=0308h 
RF[3]= 
    xxxxh 

CLK 

(n+7) 
Fetch 
PC=17 
IR=0308h 
RF[3]= 
    0007h 

Be sure you understand CC, clock period"
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Common (and good) performance metrics"
•  latency: response time, execution time "

–  good metric for fixed amount of work (minimize time)"

•  throughput: work per unit time"
–  = (1 / latency) when there is NO OVERLAP "
–  > (1 / latency) when there is overlap "

•  in real processors there is always overlap"
–  good metric for fixed amount of time (maximize work)"

•  comparing performance "
–  A is N times faster than B if and only if: "

•  time(B)/time(A) = N "
–  A is X% faster than B if and only if:"

•  time(B)/time(A) = 1 + X/100"

10 time units"

Finish"
each"

time unit"

Instruction"
Count"

Clock Cycle"
Time"
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CPU time:  the “best” metric"

"
"
•  We can see CPU performance dependent on:"

–  Clock rate, CPI, and instruction count"
•  CPU time is directly proportional to all 3:"

–  Therefore an x % improvement in any one variable leads 
to an x % improvement in CPU performance"

•  But, everything usually affects everything:"

Hardware"
Technology"

CPI"

Organization" ISAs" Compiler 
Technology"



PIPELINES"

5" 6"

Pipelining improves throughput"

Inst. #" 1" 2" 3" 4" 5" 6" 7" 8"

Inst. i" IF" ID" EX" MEM" WB"

Inst. i+1" IF" ID" EX" MEM" WB"

Inst. i+2" IF" ID" EX" MEM" WB"

Inst. i+3" IF" ID" EX" MEM" WB"

Clock Number"
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Time for N instructions in a pipeline:"
•  If times for all S stages are equal to T:"

–  Time for one initiation to complete still ST"
–  Time between 2 initiates = T not ST"
–  Initiations per second = 1/T"

•  (assumes no stalls)"
"

•  Pipelining:  "
–  Overlap multiple executions of same sequence"
–  Improves THROUGHPUT, not the time to perform a 

single operation"

Time for N initiations: "NT + (S-1)T"
Throughput: " "Time per initiation = T + (S-1)T/N ! T!"

Key to improving performance:"
“parallel” execution"
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Stalls and performance"
•  Stalls impede progress of a pipeline and result in 

deviation from 1 instruction executing/clock cycle"

•  CPI pipelined ="
–  Ideal CPI + Pipeline stall cycles per instruction"
–  1 + Pipeline stall cycles per instruction"

•  Ignoring overhead and assuming stages are balanced:"

"
•  Ideally, speedup equal to # of pipeline stages"

Stalls occur because of hazards!"
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Pipelining hazards"
•  Pipeline hazards prevent next instruction from 

executing during designated clock cycle"

•  There are 3 classes of hazards:"
–  Structural Hazards:"

•  Arise from resource conflicts "
•  HW cannot support all possible combinations of instructions"

–  Data Hazards:"
•  Occur when given instruction depends on data from an 

instruction ahead of it in pipeline"
–  Control Hazards:"

•  Result from branch, other instructions that change flow of 
program (i.e. change PC)"
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Structural hazards (why)"
•  1 way to avoid structural hazards is to duplicate 

resources"
–  i.e.:  An ALU to perform an arithmetic operation and an 

adder to increment PC"

•  If not all possible combinations of instructions can be 
executed, structural hazards occur"

•  Most common instances of structural hazards:"
–  When some resource not duplicated enough"
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Data hazards (why)"
•  These exist because of pipelining"

•  Why do they exist???"
–  Pipelining changes order or read/write accesses to 

operands"
–  Order differs from order seen by sequentially executing 

instructions on un-pipelined machine"

•  Consider this example:"
–  ADD R1, R2, R3"
–  SUB R4, R1, R5"
–  AND R6, R1, R7"
–  OR R8, R1, R9"
–  XOR R10, R1, R11"

All instructions after ADD use 
result of ADD "
"
ADD writes the register in WB 
but SUB needs it in ID."
"
This is a data hazard"
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Data hazards (avoiding with forwarding)"
•  Problem illustrated on previous slide can actually be solved 

relatively easily – with forwarding"

•  In this example, result of the ADD instruction not really needed 
until after ADD actually produces it"

•  Can we move the result from EX/MEM register to the beginning of 
ALU (where SUB needs it)?"
–  Yes!  Hence this slide!"

•  Generally speaking:"
–  Forwarding occurs when a result is passed directly to functional unit 

that requires it."
–  Result goes from output of one unit to input of another"
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Data hazards (avoiding with forwarding)"

Idea:  send result just 
calculated back 
around to ALU inputs"

Send output of memory back to ALU too…"
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Data hazards (forwarding sometimes fails)"

AL
U"

Reg"IM" DM" Reg"

AL
U"

Reg"IM" DM"

AL
U"

Reg"IM"

Time"

LW R1, 0(R2)"

SUB R4, R1, R5"

AND R6, R1, R7"

OR R8, R1, R9" Reg"IM"

Can’t get data to subtract b/c result needed at beginning of"
CC #4, but not produced until end of CC #4."

Load has a latency that"
forwarding can’t solve."
"
Pipeline must stall until "
hazard cleared (starting "
with instruction that "
wants to use data until "
source produces it)."
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Hazards vs. dependencies"
•  dependence: fixed property of instruction stream "

–  (i.e., program) "

•  hazard: property of program and processor 
organization "
–  implies potential for executing things in wrong order "

•  potential only exists if instructions can be simultaneously 
“in-flight” "

•  property of dynamic distance between instructions vs. 
pipeline depth "

•  For example, can have RAW dependence with or 
without hazard "
–  depends on pipeline "
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Branch / Control Hazards"
•  So far, we’ve limited discussion of hazards to:"

–  Arithmetic/logic operations"
–  Data transfers"

•  Also need to consider hazards involving branches:"
–  Example:"

•  40: "beq "$1, $3, $28              # ($28 gives address 72)"
•  44: "and "$12, $2, $5"
•  48: "or "$13, $6, $2"
•  52: "add "$14, $2, $2"
•  72: "lw "$4, 50($7)"

•  How long will it take before branch decision?"
–  What happens in the meantime?"
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A Branch Predictor" Branch prediction critical path (BTB)"
•  Branch Target Buffer (BTB): Address of branch index to get 

prediction AND branch address (if taken)"
–  Note: must check for branch match now, since can’t use wrong 

branch address"
•  Example: BTB combined with BHT"
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Branch PC" Predicted PC"

=?"

PC of instruction"
FETCH

"

Extra "
prediction state"

bits"
Yes: instruction is 
branch and use 
predicted PC as 
next PC"

No: branch not "
predicted, proceed normally"
 (Next PC = PC+4)"

MEMORY HIERARCHIES"

19" 20"

Is there a problem with DRAM?"

µProc"
60%/yr."
(2X/1.5yr)"

DRAM"
9%/yr."
(2X/10yrs)"
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DRAM"

CPU"
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Processor-Memory"
Performance Gap: 
grows 50% / year"

Pe
rfo
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"

Time"

“Moore’s Law”"

Processor-DRAM Memory Gap (latency)"
Why is this a problem?"

20"



A common memory hierarchy"
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CPU Registers"
100s Bytes"
<10s ns"

Cache"
K Bytes"
10-100 ns"
1-0.1 cents/bit"

Main Memory"
M Bytes"
200ns- 500ns"
$.0001-.00001 cents /bit"

Disk"
G Bytes, 10 ms  
(10,000,000 ns)"
10-5 - 10-6  cents/bit"

Tape"
infinite"
sec-min"
10"-8"

Registers"

Cache"

Memory"

Disk"

Tape"

Upper Level"

Lower Level"

faster"

Larger"

Average Memory Access Time"

•  Hit time:"
–  basic time of every access."

•  Hit rate (h):"
–  fraction of access that hit"

•  Miss penalty:"
–  extra time to fetch a block from lower level, including time 

to replace in CPU"

•  Introduces caches to improve hit time."

AMAT  =  (Hit Time)  + (1 - h)  x  (Miss Penalty)"
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Where can a block be placed in a cache?"
•  3 schemes for block placement in a cache:"

–  Direct mapped cache:"
•  Block can go to only 1 place in cache"
•  Usually:"

–  (Block address) MOD (# of blocks in the cache)"

–  Fully associative cache:"
•  Block can be placed anywhere in cache"

–  Set associative cache:"
•  A set is a group of blocks in the cache"
•  Block mapped onto a set & then block can be placed 

anywhere within that set"
•  Usually:"

–  (Block address) MOD (# of sets in the cache)"
•  If n blocks, we call it n-way set associative"

23" 24"

Where can a block be placed in a cache?"

0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7" 0 1 2 3 4 5 6 7"
Fully Associative" Direct Mapped" Set Associative"

Set 0"Set 1"Set 2"Set 3"

Block 12 can go"
anywhere"

Block 12 can go"
only into Block 4"

(12 mod 8)"

Block 12 can go"
anywhere in set 0"

(12 mod 4)"

0 1 2 3 4 5 6 7 8 ..."

Cache:"

Memory:" 12"



How is a block found in the cache?"
•  Cache’s have address tag on each block frame that 

provides block address"
–  Tag of every cache block that might have entry is 

examined against CPU address (in parallel! – why?)"

•  Each entry usually has a valid bit"
–  Tells us if cache data is useful/not garbage"
–  If bit is not set, there can’t be a match…"

•  If block data is updated, set a dirty bit"
–  Block data must be written back to higher levels of 

memory hierarchy upon replacement"
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How is a block found in the cache?"

•  Block offset field selects data from block"
–  (i.e. address of desired data within block)"

•  Index field selects a specific set"
•  Tag field is compared against it for a hit"
"

26"

Block Address"
Tag" Index"

Block"
Offset"

27"

Reducing cache misses"
•  Want data accesses to result in cache hits, not misses for 

best performance"

•  Start by looking at ways to increase % of hits…."

•  …but first look at 3 kinds of misses"
–  Compulsory misses:"

•  1st access to cache block will not be a hit – data not there yet!"
–  Capacity misses:"

•  Cache is only so big.  "
•  Can’t store every block accessed in a program – must swap out!"

–  Conflict misses:"
•  Result from set-associative or direct mapped caches"
•  Blocks discarded / retrieved if too many map to a location"

Impact of larger cache blocks:"
•  Can reduce miss by increasing cache block size"

–  This will help eliminate what kind of misses?"

•  Helps improve miss rate b/c of principle of locality:"
–  Temporal locality says that if something is accessed 

once, it’ll probably be accessed again soon"
–  Spatial locality says that if something is accessed, 

something nearby it will probably be accessed"
•  Larger block sizes help with spatial locality"

•  Be careful though!"
–  Larger block sizes can increase miss penalty!"

•  Generally, larger blocks reduce # of total blocks in cache"

28"



Impact of larger cache blocks:"

Miss rate vs. block size
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(Assuming total cache size stays constant for each curve)"

More conflict misses"

Total $ capacity"

More compulsory"
misses"
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Second-level caches"
•  Introduces new definition of AMAT:"

–  Hit timeL1 + Miss RateL1 * Miss PenaltyL1"
–  Where, Miss PenaltyL1 ="

•  Hit TimeL2 + Miss RateL2 * Miss PenaltyL2"
•  So 2nd level miss rate measure from 1st level cache misses…"
"
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VIRTUAL MEMORY"

31"

Virtual Memory"
•  Computers run lots of processes simultaneously"

–  No full address space of memory for each process"
•  Physical memory expensive and not dense - thus, too small"

–  Share smaller amounts of physical memory among many processes"

•  Virtual memory is the answer"
–  Divide physical memory into blocks, assign them to different processes"

•  Compiler assigns data to a �virtual� address.  "
–  VA translated to a real/physical somewhere in memory"

•  Allows program to run anywhere; where is determined by a particular 
machine, OS"

–  + Business:  common SW on wide product line "
»  (w/o VM, sensitive to actual physical memory size)"

32"



Translating 
VA to PA"
sort of like 
finding right"
cache entry 
with division 
of PA"

33" 34"

Review: Address Translation"

Program Paging Main Memory 

Virtual Address 

Register 

Page Table 

Page 
Frame 

Offset 

P# 

Frame # 

Page Table Ptr 

Page # Offset Frame # Offset 

+ 

35"

Page table lookups = memory references"

CPU" 42" 356"

Physical"
Memory"

356"

page table"

i"

Operating"
System"

Disk 

Special-purpose cache for translations"
Historically called the TLB: Translation Lookaside Buffer"

Cache!"

36"



TLBs speed up VA translations"
A way to speed up translation is to use a special cache of recently"
      used page table entries  --  this has many names, but the most"
      frequently used is Translation Lookaside Buffer or TLB!

Virtual Page #      Physical Frame #     Dirty   Ref    Valid    Access"

Really just a cache (a special-purpose cache) on the page table 
mappings"
"
TLB access time comparable to cache access time"
      (much less than main memory access time)"

tag"

37"

Critical path of an address translation (1)"
Just like any other cache, the TLB can be organized as fully 
associative, set associative, or direct mapped"""
TLBs are usually small, typically not more than 128 - 256 entries 
even on high end machines.  This permits fully associative lookup 
on these machines.  Most mid-range machines use small n-way set 
associative organizations."""

CPU 
TLB 
Lookup Cache Main 

Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss Translation 
with a TLB 
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Critical path of an address translation (2)"

Try to read"
from cache"

TLB access"Virtual Address"

TLB Hit?"

Write?"Try to read"
from page"
table"

Page fault?"

Replace"
page from"
disk"

TLB miss"
stall"

Set in TLB"

Cache hit?"

Cache miss"
stall"

Deliver data"
to CPU"

Cache/buffer"
memory write"

Yes"

Yes"

Yes"Yes"

No"

No" No"

No"
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PARALLEL PROCESSING"

41"

This brings us to MIMD 
configurations…"

Processors can be any of these configurations"

The many ways of parallel computing"

•  Uni:"

•  Pipelined"

•  Superscalar"

•  Centralized Shared Memory"

"
•  Distributed Shared Memory"

P M 

M 

M 

P 
M 

P 

P M 

P M 
N 
E 
T SISD"

MIMD"

* 
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MIMD Multiprocessors"

Centralized"
Shared"
Memory"

Note:  just 1 memory"

43"

Actually, quite 
representative of 
quad core chip, with 
“main memory” 
being a shared, L2 
cache."

MIMD Multiprocessors"

Distributed Memory"

Multiple, distributed memories here."

44"



Speedup from parallel processing 
metric for performance on latency-sensitive applications"

•  Time(1)  /  Time(P)    for P processors"
– note: must use the best sequential algorithm for Time(1); 

the parallel algorithm may be different."

1  2  4  8  16  32  64 

1 
 2

  4
  8

  1
6 

 3
2 

 6
4 

# processors 

sp
ee

du
p 

“linear” speedup"
(ideal)"

typical: rolls off"
w/some # of"
processors"

occasionally see"
“superlinear”... why?"
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What if you write 
good code for 4-
core chip and then 
get an 8-core chip?"

Impediments to parallel performance"
•  Reliability:"

–  Want to achieve high �up time� – especially in non-CMPs"
•  Contention for access to shared resources"

–  i.e. multiple accesses to limited # of memory banks may 
dominate system scalability"

•  Programming languages, environments, & methods:"
–  Need simple semantics that can expose computational 

properties to be exploited by large-scale architectures"
•  Algorithms"

•  Cache coherency"
–  P1 writes, P2 can read"

•  Protocols can enable $ coherency but add overhead"

46"

€ 

Speedup = 1

1-Fractionparallelizable[ ] +
Fractionparallelizable

N

Not all problems 
are parallelizable"

Overhead where no actual processing is done."
46"

Impediments to parallel performance"
•  Latency"

–  …is already a major source of performance degradation"
•  Architecture charged with hiding local latency"

–  (that�s why we talked about registers & caches)"
•  Hiding global latency is also task of programmer"

–  (I.e. manual resource allocation)"

•  All     ’ed items also affect speedup that could be 
obtained, add overheads"

Overhead where no actual processing is done."
47"

€ 

Speedup = 1

1-Fractionparallelizable[ ] +
Fractionparallelizable

N

Maintaining Cache Coherence"
•  Hardware schemes"

–  Shared Caches"
•  Trivially enforces coherence"
•  Not scalable (L1 cache quickly becomes a bottleneck)"

–  Snooping"
•  Needs a broadcast network (like a bus) to enforce coherence"
•  Each cache that has a block tracks its sharing state on its own"

–  Directory"
•  Can enforce coherence even with a point-to-point network"
•  A block has just one place where its full sharing state is kept"
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How Snooping Works"

State Tag     Data"

CPU"

Bus"

"
"
CPU references check cache 
tags (as usual)"
"
"
Cache misses filled from 
memory (as usual)"

" "+"
Other read/write on bus must 
check tags, too, and possibly 
invalidate"

Often 2 sets of tags…why?"
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What happens on write conflicts? 
(invalidate protocol)"

•  Assumes neither cache had value/location X in it 1st"

•  When 2nd miss by B occurs, CPU A responds with 
value canceling response from memory."

•  Update B’s cache & memory contents of X updated"
•  Typical and simple…"

Processor 
Activity"

Bus Activity" Contents 
of CPU A’s 

cache"

Contents of 
CPU B’s cache"

Contents of 
memory 

location X"
0"

CPU A reads X" Cache miss for X" 0" 0"
CPU B reads X" Cache miss for X" 0" 0" 0"
CPU A writes a 

1 to X"
Invalidation for X" 1" 0"

CPU B reads X" Cache miss for X" 1" 1" 1"
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M(E)SI Snoopy Protocols for $ coherency"
•  State of block B in cache C can be"

–  Invalid: B is not cached in C"
•  To read or write, must make a request on the bus"

–  Modified: B is dirty in C"
•  C has the block, no other cache has the block, 

and C must update memory when it displaces B"
•  Can read or write B without going to the bus"

–  Shared: B is clean in C"
•  C has the block, other caches have the block, 

and C need not update memory when it displaces B"
•  Can read B without going to bus"
•  To write, must send an upgrade request to the bus"

–  Exclusive:  B is exclusive to cache C"
•  Can help to eliminate bus traffic"
•  E state not absolutely necessary"
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Cache to Cache transfers"
•  Problem"

–  P1 has block B in M state"
–  P2 wants to read B, puts a read request on bus"
–  If P1 does nothing, memory will supply the data to P2"
–  What does P1 do?"

•  Solution 1: abort/retry"
–  P1 cancels P2’s request, issues a write back"
–  P2 later retries RdReq and gets data from memory"
–  Too slow (two memory latencies to move data from P1 to P2)"

•  Solution 2: intervention"
–  P1 indicates it will supply the data (“intervention” bus signal)"
–  Memory sees that, does not supply the data, and waits for P1’s data"
–  P1 starts sending the data on the bus, memory is updated"
–  P2 snoops the transfer during the write-back and gets the block"
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Latency"

53"(and this is just the physics – no router overhead, etc. included) "

NW topologies facilitate communication 
among different processing nodes…"

From Balfour, Dally, Supercomputing"54"

…but add additional overhead"
•  Time to message ="

# of hops (routers) x time per router +"
# of links x time per link +"
serialization latency (ceiling(message size / link BW))"
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Load balancing"
•  Load balancing:  keep all cores busy at all times"

–  (i.e. minimize idle time)"
•  Example:"

–  If all tasks subject to barrier synchronization, slowest 
task determines overall performance:"
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