
Name:__________________________ 

CSE 30321 –  Computer Architecture I – Fall 2011 
Midterm Exam 

October 14, 2011 
 

 
Test Guidelines: 

1. Place your name – or at least your initials! – on ***EACH*** page of the test in the space 
provided.  Be sure to do this on p. 1 and 2! 

2. Answer every question in the space provided.  If separate sheets are needed, make sure to 
include your name and clearly identify the problem being solved. 

3. Read each question carefully.  Ask questions if anything needs to be clarified. 
4. The exam is open book and open notes. 
5. All other points of the ND Honor Code apply. By writing your name on the exam, you agree to 

abide by the ND Honor Code. 
6. Upon completion, please turn in the test and any scratch paper that you used. 

 
Suggestion: 

- Whenever possible, show your work and your thought process.  This will make it easier for us to 
give you partial credit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Name:__________________________ 

Score Sheet 
 

 
Question 

 
Possible Points Your Points 

1 20  
 

2 15  
 

3 10  
 

4 15  
 

5 20  
 

6 20  
 

Total 100  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Name:__________________________ 

Problem 1:  (20 points) 
Below, snippets of assembly code are shown for different, nested procedures.  Based on the code, 
answer the questions below.  Your answers should reflect the MIPS procedure call conventions.   
  main     Function_1    Function_2 
 

add  $t1, $t2, $t3   …    … 
lw  $s1, 0($t1)   …    … 
lw  $s2, 4($t1)   sub  $t1, $a0, $a1  … 
add  $a0, $s1, $0   lw  $t2, 0($t1)  … 
add  $a1, $s2, $0   …    … 
jal  Function_1   add  $a0, $t1, $0  … 
…     jal Function_2  … 
sw  $s1, 0($v0)   …    … 
sw  $s2, 4($v0)   jr  < to main >  jr  < to Function_1 > 

 
Question A:  (3 points) 
Based on the code provided, what registers must be saved to the stack by Function_1 to preserve 
program correctness? 
 
Answer:  $ra (to main), $s1 $s2 (1 point each) (if answer includes references to other parts, OK) 
 
Question B:  (4 points) 
Write the MIPS assembly language needed to implement your answer to Question A.  
Answer: addi $sp, $sp, -12   (If subi is used, 0 points were subtracted.) 

sw $s1, 0($sp) 
sw $s2, 4($sp) 
sw $ra, 8($sp)   (any order of storing is fine…) 

 
Question C:  (3 points) 
Presumably, how many arguments does Function_2 require? 
 
Answer:  1.  Only one argument is copied into an argument register – and it is $a0 (the first $a register) 
 
Question D:  (3 points) 
If Function_1 uses the data in $a0 and $a1 (passed from main) after the call to Function_2, how are the 
values of $a0 and $a1 saved?  What function preserves them? (No MIPS code is needed, just explain.) 
 
Answer:  Function_1 must save $a0 and $a1 to the stack.  (Both must be mentioned, otherwise, -2) 
 
Question E:  (3 points) 
If Function_2 calls the library routine X, what data do you think X would save to the stack at entry? 
 
Answer:  It would callee save the $ra, $sp, and $s registers. (Its OK to mention other pointer registers.) 
 
Question F:  (4 points) 
Based on the code provided, what must Function_1 do before the jr instruction back to main? 
 
Answer:  (1) Write data to $v0 (1 bonus point) and (2) restore stack data ($s regs and $ra) (4 points) 



Name:__________________________ 

Problem 2:  (15 points) 
 
Question:  (15 points) 
Translate the HLL code below to MIPS assembly.  Every instruction should have a comment! 
 
  HLL Code     Assume the following 
  if (i==j) {    The starting address of array a[] is in $20 
    a[i] = b[j];   The starting address of array b[] is in $21 
  }      Index i maps to $5 
  else {     Index j maps to $6 
  a[i] = b[j+1];    
  }       If any temporary registers are used, please start with $10 
 
Answer (long)    Answer (short) 

bneq  $5, $6, else    sll  $10, $5, 2  # multiply i*4 
if: sll  $10, $5, 2    sll  $11, $6, 2  # multiply j*4 
 sll $11, $6, 2    add $10, $10, $20  # address of a[i] 
 add  $10, $10, $20    add $11, $11, $21  # address of b[i] 
 add $11, $11, $21    bneq $5, $6, else  # does i == j? 
 lw $12, 0($11)   if: lw $12, 0($11)  # load b[i] 
 sw $12, 0($10)    jump  end   # skip else case 
 jump end    else: lw $12, 4($11)  # load b[j+1] 
else: sll  $10, $5, 2   end: sw $12, 0($10)  # write a[i] 
 sll $11, $6, 2 
 add  $10, $10, $20 
 add $11, $11, $21 
 lw $12, 4($11) 
 sw $12, 0($10) 
end: 
 
Total:  14 instructions    Total: 9 instructions 
 
(If students use an addi instruction to handle j+1 – and then use lw, sw instructions with base 0, that’s 
OK.) 
 
For a 3 point bonus, complete the question with 10 instructions or less. 
 
 
 
 
 
 
 
 
 
 
 
 



Name:__________________________ 

Problem 3:  (10 points) 
Benchmark B is comprised of ALU, Load, Store, and Branch/Jump instructions.  The number of 
instructions required to execute benchmark B are broken down by class-type in the table below.  The 
number of clock cycles required to execute each instruction is also given in the table below. 
 

Instruction Class Clock Cycles per Instruction Number of Instructions 
ALU 6 1,000,000,000  (i.e. 1.0 x 109) 
Load 8 200,000,000     (i.e. 2.0 x 108) 
Store 7 180,000,000     (i.e. 1.8 x108) 
Branch / Jump 5 140,000,000     (i.e. 1.4 x 108) 

 
To improve the performance of this benchmark, 2 changes will be made. 
 
First, a new instruction will be added – load++ – which will (a) copy a piece of data from memory into a 
register, and (b) update the register value that is currently used to calculate a memory address (such 
that a separate instruction is not required to calculate the address of the next data element). 
 
The new load++ instruction: 

• Requires 8 CCs to execute – just like the original load. 
• Will lead to the elimination of 70,000,000 (or 7 x 107) ALU instructions. 

 
Second, a change will be made to the existing datapath to reduce the number of clock cycles 
associated with branch / jump instructions from 5 to 4. 
 
Assuming a constant clock rate of 2 GHz, what speedup is obtained if both changes are 
implemented? 
 
Answer: 
Two CPU times must be calculated – a baseline CPU time and a new CPU time. 
 
CPUbase: 
 = [ (1 x 109)(6) + (2 x 108)(8) + (1.8 x 108)(7) + (1.4 x 108)(5) ] cycles x (0.5 x 10-9 s / cycle) 
 = [ (6.0 x 109) + (1.6 x 109) + (1.26 x 109) + (7.0 x 108) ] cycles  x (0.5 x 10-9 s / cycle) 
 = (9.56 x 109 cycles) x (0.5 x 10-9 s / cycle) 
 = 4.78 seconds 
 
CPUnew: 

- To calculate a new CPI, we first need to calculate a new number of ALU instructions. 
o (1 x 109) – (7 x 107) = 9.3 x 108 ALU instructions. 

- We can then perform a similar calculation to that given above 
o (Of course, the CPI for branch / jump instructions must be reduced by 1.) 

 
 = [ (9.3 x 108)(6) + (2 x 108)(8) + (1.8 x 108)(7) + (1.4 x 108)(4) ] cycles x (0.5 x 10-9 s / cycle) 
 = [ (5.58 x 109) + (1.6 x 109) + (1.26 x 109) + (5.6 x 108) ] cycles  x (0.5 x 10-9 s / cycle) 
 = (9.0 x 109 cycles) x (0.5 x 10-9 s / cycle) 
 = 4.5 seconds 
 
Thus, the new version is:  9.56 / 9.0 – or 6.2% faster. 



Name:__________________________ 

Problem 4:  (15 points) 
Statistics regarding the number of instructions associated with a large MP3 encode and decode are 
shown in the table below.  For this problem you should assume that these benchmarks are executed on 
a multi-cycle datapath.  The number of clock cycles required to execute each instruction is also 
provided in the table below.   
 
(Note that in this question, the number of clock cycles required for each instruction type is the same as 
for the MIPS multi-cycle datapath discussed in class.) 
 

Statistics for large MP3 encode  Statistics for large MP3 decode 
Instruction 

type 
Instruction 

count 
Clock cycles 

per instruction 
Instruction 

type 
Instruction 

count 
Clock cycles 

per instruction 
Loads 4.20 x 108 5 Loads 5.10 x 108 5 
Stores 2.14 x 108 4 Stores 1.77 x 108 4 

Branch/Jump 4.70 x 107 3 Branch/Jump 8.70 x 107 3 
ALU 4.69 x 108 4 ALU 1.01 x 109 4 

 
Assume that we want the performance of the slower benchmark to match the original performance of 
the faster benchmark.  For this problem, the only way that you can do this is to redesign your datapath 
hardware to improve CPI values (instruction counts and clock rate will remain the same).   
 
What must the new, average CPI of the slower benchmark be in order to match the original 
performance of the faster benchmark? 
 
Answer: 

 

𝐶𝑃𝐼!"#$ =
4.20×10! 5 +    2.14×10! 4 +    4.70×10! 3 +    4.69×10! 4

4.20×10! +    2.14×10! +    4.70×10! + 4.69×10!
=
4.973×10!

1.15×10!
= 4.324 

 

𝐶𝑃𝐼!"# =
5.10×10! 5 +    1.77×10! 4 +    8.70×10! 3 +    1.01×10! 4

5.10×10! +    1.77×10! +    8.70×10! + 1.01×10!
=
7.543×10!

1.78×10!
= 4.238 

 
 
Given that the CPIs are similar, and the instruction count of mad is much larger than lame, mad will be 
the slower benchmark. 
 
We now need to set the execution time of lame to that of mad – and see by what percentage the mad 
CPI must be reduced… 
 

1.15×10! 4.324 𝑐𝑙𝑜𝑐𝑘  𝑝𝑒𝑟𝑖𝑜𝑑 = 1.78×10! 4.238 (𝑁) 𝑐𝑙𝑜𝑐𝑘  𝑝𝑒𝑟𝑖𝑜𝑑  
 

Solving for N, we find that N = 0.659.   
 
As such, the CPI of mad must be 66% of its original value – or 2.793 – to match the original 
performance of lame. 
 
 
 



Name:__________________________ 

Problem 5:  (20 points) 
• Assume that we want to implement a simple, 16-instruction processor.   
• The processor will have 64, user programmable registers.   
• All 16 instructions – as well as the resulting register transfer language for different instruction 

types – are summarized in the table below: 
 
Instruction Class Instructions Example Syntax Comment 
ALU 
(all data in registers) 

ADD, SUB, AND, OR, 
NAND, NOR 

ADD Rx, Ry, Rz 
Rx ß Ry + Rz 

 

ALU 
(1 operand immediate value) 

ADDI, SUBI, SLL, SRL ADDI Rx, Ry, N 
Rx ß Ry + Constant N 

For this instruction, N is a 
12-bit signed constant.   

MULT/DIV 
(all data in registers) 

MULT, DIV MULT Rx, Ry, Rz 
Rx ß Ry * Rz 

 

Load LOAD LOAD Rx, Ry 
Rx ß Memory(Ry) 

Note that the base address 
in register Ry is the final 
address sent to memory.  
No constant value is added. 

Store STORE STORE Rx, Ry 
Memory(Ry) ß Rx 

Note that the base address 
in register Ry is the final 
address sent to memory.  
No constant value is added. 

Branch BEQ, BNEQ BEQ Rx, Ry, N 
if Rx == Ry, PC ß PC + N 
else, PC ß PC + 4 
 

For this instruction, N is a 
12-bit signed constant.  
(Thus, the PC value can 
increase OR decrease.) 

 
Question A:  (4 points) 
How many bits must an instruction encoding be in order to support all of the instruction types described 
above? 
 
Answer: 
ALU: 4 bits of opcode    ALU (imm): 4  bits of opcode 

6  bits for destination register    6  bits for destination register 
6  bits for source register 1    6  bits for source register 1 
6  bits tor source register 2    12 bits for constant 
22  bits total      28  bits total 
 

Ld: 4  bits of opcode    Branch: 4 bits of opcode 
or 6  bits for destination / source register   6 bits for source register 1 
St 6   bits for address register    6  bits for source register 2 
 16 bits total      12  bits for constant 
         28 bits total 
 
28 bits are needed to support all instruction encodings. 
 
 
 
 
 
 
 



Name:__________________________ 

Question B:  (4 points) 
Two sequences of instructions that would execute the core of the loop code shown below are provided.   
You can / should assume the following: 

• Register R0 contains the number 0. 
• Register R1 maps to the variable i and is initially 0 
• Register R2 maps to the variable N; N is greater than 0 
• Register R10 contains the starting address of a[] 
• Register R7 contains the constant 5 
• To fetch the next data word in our array, we update the address by 4 – just like in MIPS  

 
C-Code    Assembly Version 1   Assembly Version 2 
      …     … 
for(i=0; i<N; i++) {  start: BEQ  R1, R2, end  start: BEQ  R1, R2, end 
   a[i] = a[i] * 5;   SLL R3, R1, 2   SLL  R3, R1, 4 
}      ADD  R4, R3, R10   ADD  R4, R3, R10 
      LOAD R5, R4    LOAD R5, R4 
      ADD R5, R5, R5   MULT R5, R5, R7 
      ADD R5, R5, R5   Store R5, R4 
      ADD R5, R5, R0  ** Addi R1, R1, 1 
      Store R5, R4    BEQ  R0, R0, start 
     ** Addi R1, R1, 1  end: 

BEQ  R0, R0, start 
     end: 
 
Based on the finite state machine for this particular ISA / datapath shown above, how many clock 
cycles does 1 iteration of each loop take?   
 
State Machine 

  
Answer: 
Version 1 requires:   3 + 4 + 4 + 5 + 4 + 4 + 4 + 5 + 4 + 3  = 40 CCs 
Version 2 requires: 3 + 4 + 4 + 5 + 7 + 5 + 4 + 3  = 35 CCs 

Fetch!

Decode!

Load / Store!

Load / Store!

Load / Store!

Branch! ALU!

ALU!

MULT / DIV!

MULT / DIV!

MULT / DIV!

MULT / DIV!

MULT / DIV!

LOAD, STORE!

ADD, SUB, AND, OR, NAND, 

NOR, ADDI, SUBI, SLL, SRL!



Name:__________________________ 

Question C:  (4 points) 
In what clock cycles would the new value of R1 – written by the **’ed addi instructions –  be available 
for reading with the updated value? 
 
Answer: 

- Clock cycle #38 for Sequence #1 and clock cycle #33 for Sequence #2 
 
 
Question D:  (4 points) 
What if the C-Code in Question B instead read: 
 
  for(i=0; i<N; i++) { 

    a[i] = a[i] * 8; 
 }  

 
How might you change the assembly code shown above to make it more efficient?  How much faster 
would each iteration of the loop be? 
 
Answer: 
The multiply instruction could be changed to a SLL instruction – i.e. SLL R5, R5, 3. 
This would shave 4 more clock cycles off of the 34 clock cycle total – for a total of 31 CCs per iteration. 
This would result in an ~10% speedup. 
 
Question E:  (4 points) 
Write a sequence of assembly instructions with this ISA that will swap the data in address 1000 with the 
data in address 2000.  Each line MUST have a comment associated with it. 
 
Answer: 
 ADDI R1, R0, 1000  # Put address 1000 into R1 
 ADDI R2, R0, 2000  # Put address 2000 into R2 
 Load R3, R1   # Load data at address 1000 
 Load  R4, R2   # Load data at address 2000 
 Store R4, R1   # Store data that was in address 2000 into address 1000 
 Store  R3, R2   # Store data that was in address 1000 into address 2000 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Name:__________________________ 

Problem 6:  (TBD points) 
We want to add a new instruction to the MIPS multi-cycle datapath that we have discussed in class.  
 
For your reference, (i) a description of what happens during each cycle of execution, (ii) the finite state 
machine diagram, and (iii) a copy of the datapath are all attached to the end of this document. If it’s 
helpful, feel free to remove this from the packet.  Nothing has changed from the class and/or homework 
versions. 
 
The instruction that will be added will copy a value from 1 register to another.  The instruction syntax, 
register transfer language, and encoding are all shown below.  Note that the encoding is quite similar to 
a MIPS addi instruction – which is also included for the sake of comparison. 
 
Syntax:  mov Rx, Ry 
RTL:  Rx ß Ry 
 
Encoding:
  
 
 
 
 
Example:  

• Assume Rx initially holds the number 10 and Ry initially holds the number 20. 
• After this instruction finishes, both Rx and Ry will hold the number 20. 
• The encoding for mov $1, $7 would look like this: 

 
 
 
 
 
Based on this information answer the questions below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Bits 31-26 Bits 25-21 Bits 20-16 Bits 15-0 
Mov opcode source 

register 
destination 
register 

Unused / don’t care 

Addi opcode source 
register 

destination 
register 

Immediate value 

 Bits 31-26 Bits 25-21 Bits 20-16 Bits 15-0 
Mov opcode 00111 00001 xxxx xxxx xxxx xxxx 



Name:__________________________ 

Question A:  (5 points) 
It is possible to accomplish this mov instruction in just 3 clock cycles without using the ALU in clock 
cycle number 3 – although a small hardware change will be required.  Moreover, no modifications to the 
current / existing fetch and decode steps are required.  Explain why no changes are needed to the fetch 
and decode states. 
 
Answer: 

• We load data into temporary registers A and B in cycle 2.   
• We can use the data in the A register (need to mention or refer to) in cycle 3; send it back to 

the register file 
 
Question B:  (5 points) 
As mentioned above, we can finish this instruction in the 3rd cycle of execution without using the ALU.  
However, a very small hardware change is needed.  What is it?  
 
Answer: 
We need to add a path from the A register to the multiplexor that precedes the register file data port. 
 
Question C:  (5 points) 
Do we need to augment the finite state machine diagram – i.e. by adding or changing a state in cycle 
3?  If so, why?  Note that you do not need to do this.  Just explain if you need to do it and why. 
 
Answer: 
Yes.  We want to write the register file with data from the temporary A register.  Unique sets of control 
signals must be generated. 
 
Question D:  (5 points) 
In Problem 1, the following code snippets were given for Function_1: 
 
  Function_1 
   
   … 
   … 
   sub  $t1, $a0, $a1 
   lw  $t2, 0($t1) 
   … 
   add $a0, $t1, $0 
   jal Function_2 
   … 
   jr <to main> 
 
Will the mov instruction discussed in this problem improve the performance of this code? 
 
Answer: 
Yes.  The add instruction can be replaced.  We can save 1 CC. 
 


