Math 10560-04 Answers to Integration by Parts

1. $\int \theta \cos(\pi \theta) \, d\theta$ **Answer** $\frac{\cos(\pi \theta)}{\pi^2} + \frac{\theta \sin(\pi \theta)}{\pi}$ Take $u = \theta$, $dv = \cos(\pi \theta)$. 2. $\int \tan^{-1} y \, dy$

Answer
$$y \tan^{-1}(y) - \frac{\ln(1+y^2)}{2}.$$

Take $u = \tan^{-1} y$, dv = dy.

Note: If you calculated $\int \sin^{-1} y \, dy$ you can find this worked out in the notes for §8.1.

 $3. \int p^4 e^{-p} \, dp$

Answer
$$-(24+24p+12p^2+4p^3+p^4)e^{-p}$$

Take $u = p^4$, $dv = e^{-p}$. You have to integrate by parts 4 times, each time taking u to be the power of p.

4.
$$\int_{1}^{e} x^{3} \ln x \, dx$$

Answer $\frac{1}{16} + \frac{3e^{4}}{16}$

Take $u = \ln x$, $dv = x^3 dx$. Integration by parts will give you $\frac{x^4 \ln x}{4} - \frac{x^4}{16}$. Now evaluate at the endpoints.