Math 10560-04
 Answers to Integration by Parts

1. $\int \theta \cos (\pi \theta) d \theta$

Answer $\quad \frac{\cos (\pi \theta)}{\pi^{2}}+\frac{\theta \sin (\pi \theta)}{\pi}$
Take $u=\theta, d v=\cos (\pi \theta)$.
2. $\int \tan ^{-1} y d y$

Answer $\quad y \tan ^{-1}(y)-\frac{\ln \left(1+y^{2}\right)}{2}$.
Take $u=\tan ^{-1} y, d v=d y$.
Note: If you calculated $\int \sin ^{-1} y d y$ you can find this worked out in the notes for §8.1.
3. $\int p^{4} e^{-p} d p$

Answer $\quad-\left(24+24 p+12 p^{2}+4 p^{3}+p^{4}\right) \mathrm{e}^{-p}$
Take $u=p^{4}, d v=e^{-p}$. You have to integrate by parts 4 times, each time taking u to be the power of p.
4. $\int_{1}^{e} x^{3} \ln x d x$

Answer $\quad \frac{1}{16}+\frac{3 e^{4}}{16}$
Take $u=\ln x, d v=x^{3} d x$. Integration by parts will give you $\frac{x^{4} \ln x}{4}-\frac{x^{4}}{16}$. Now evaluate at the endpoints.

