Assignment 10, due Thursday, March 24

Note the unusual due date.
Reread $\S \S 8.5$ and 9.1 and read $\S \S 9.1-2$ in Polking, Boggess and Arnold.
Do:
§8.5 \#28,33
§9.1 \#16,24,53,54,56
$\S 9.2 \# 42,44,46,50,52,54,57,59$ if we get far enough Wednesday

Additional problem 1

Use ode45 to find and plot a numerical approximation of the orbit (the path of the particle in the $x y$ plane) in $\S 8.5 \# 33$ with $k=1$ and $x(0)=2, x^{\prime}(0)=0, y(0)=0, y^{\prime}(0)=-0.5$. (§14.3.3 in Differential Equations with MATLAB ${ }^{\circledR}$ explains how to use ode 45 for systems.)

Additional Problem 2

Let

$$
\mathbf{x}(t)=\binom{e^{t}}{t e^{t}} \quad \text { and } \quad \mathbf{y}(t)=\binom{1}{t}
$$

(a) Show that $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are linearly dependent at each point in the interval $0 \leq t \leq 1$.
(b) Show that $\mathbf{x}(t)$ and $\mathbf{y}(t)$ are linearly independent as vector valued functions.
(c) Why doesn't this contradict Proposition 8.5.12?

Reread chapters 14 and 15 in Differential Equations with MATLAB ${ }^{\circledR}$.
Do as a MATLAB group:
Problem Set F \#1 Do not use pplane.
Make sure the names of all members of your MATLAB group are on MATLAB assignment before turning it in.

Hint for Problem Set F \#1

In (b), be sure to draw the eigenvectors if relevant and indicate the direction of increasing time on the trajectories.

