Assignment 11, due April 8

Reread $\S 9.2$ and read $\S \S 9.3,9.4$ and 9.6 in Polking, Boggess and Arnold.
Do:
§9.2 \#44,46,52,54
§9.3 \#10,11,12,16,20,22
§9.4 \#19,26

Additional Problem - required

(a) Let A be an $n \times n$ real matrix. Prove that for every $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{n}$,

$$
\langle A \mathbf{x}, \mathbf{y}\rangle=\left\langle\mathbf{x}, A^{T} \mathbf{y}\right\rangle
$$

where A^{T} is the transpose of A and if $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{T}, \mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)^{T}$ with $v_{j}, w_{k} \in \mathbf{C}, j, k=1 \ldots n$, then \langle,$\rangle is the inner product (the dot product if \mathbf{v}, \mathbf{w} \in \mathbf{R}^{n}$), $\langle\mathbf{v}, \mathbf{w}\rangle=\sum_{j=1}^{n} v_{j} \bar{w}_{k}$.
(b) Prove that if in addition A is symmetric, i.e., $A=A^{T}$ and λ is an eigenvalue of A with eigenvector $\mathbf{v} \in \mathbf{C}^{n}$ then

$$
\lambda\langle\mathbf{v}, \mathbf{v}\rangle=\bar{\lambda}\langle\mathbf{v}, \mathbf{v}\rangle
$$

so $\lambda=\bar{\lambda}$ and all the eigenvalues of A are real.
(c) Under the hypotheses of (b), prove that if λ_{1}, λ_{2} are eigenvalues of A, with corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and $\lambda_{1} \neq \lambda_{2}$ then \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal, i.e., $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=0$

Reread chapters 14 and 15 in Differential Equations with MATLAB ${ }^{\circledR}$.
Do as a MATLAB group:
Problem Set F \#1 second and third systems. Do not use pplane.
Make sure the names of all members of your MATLAB group are on MATLAB assignment before turning it in.

Hint for Problem Set F \#1

In (b), be sure to draw the eigenvectors if relevant and indicate the direction of increasing time on the trajectories.

