Math 20750, Spring 2016

Review for Final — Outline of topics we covered

- What is an ODE and what is a solution
 - Geometric meaning of ODE
 - * direction field
 - $\ast\,$ solution curves
- Special types of problems
 - Autonomous
 - Linear
 - * Homogeneous linear
 - * Nonhomogeneous linear
- Existence and uniqueness theorem
 - Applies to
 - * First order equation
 - * Systems
 - * Second order equation
 - Stronger existence result in linear case
 - geometric interpretation of uniqueness
 - * First order
 - * Solution curves of autonomous systems
 - Dependence of solutions on initial conditions
- Linear problems
 - Solutions of a homogeneous linear problem form a vector space
 - * Linear independence
 - * Fundamental set of solutions
 - Two solutions of a nonhomogeneous linear problem differ by solution of corresponding homogeneous problem
 - * Applies in particular to nonhomogeneous linear
 - $\cdot\,$ first order ODE
 - \cdot systems
 - $\cdot\,$ second order ODE
- Analytic solution

- First order ODEs
 - * Separable equations
 - * Linear equations
 - $\cdot\,$ can be solved using integrating factor or variation of parameters
 - * Exact equations
- Constant coefficient systems
 - * Homogeneous
 - $\cdot\,$ Technique for finding a fundamental set of solutions, using eigenvalues, eigenvectors, generalized eigenvectors
 - $\cdot\,$ Matrix exponential
 - * Nonhomogeneous
 - $\cdot\,$ Variation of parameters
 - \cdot Undetermined coefficients
- Constant coefficient second order ODEs
 - * Homogeneous
 - * Nonhomogeneous
 - $\cdot\,$ Undetermined coefficients
 - $\cdot\,$ Variation of parameters
- Qualitative analysis
 - First order autonomous equations
 - * Using direction field
 - * Phase line
 - $\ast\,$ Equilibrium points and solutions
 - $\cdot\,$ Classification unstable or asymptotically stable
 - * Using phase line to sketch solutions
 - Autonomous systems
 - * Stability
 - * Phase plane (more generally, phase space), phase portrait
 - * Linear planar systems
 - \cdot Classification of equilibrium point by type (e.g., nodal sink) in linear case
 - $\ast\,$ Nonlinear autonomous systems
 - $\cdot \,$ Linearization
 - $\cdot\,$ Classification of equilibrium point by type and stability from linearization when possible
 - $\cdot\,$ Phase portraits
 - Nullclines

- Applications
 - Key idea derivative is rate of change
 - Motion
 - Mixing problems (single and multiple tanks)
 - Population models
 - * Malthusian model
 - * logistic model
 - Personal finance
 - Spring systems, harmonic motion
 - * Beats
 - * Resonance
- Numerical solutions of ODEs
 - Euler's method
 - Runge–Kutta method
 - ode45
 - Errors, controlling error, reliability of numerical methods