Math 30530, Fall 2015

Review for Final

The exam is Wednesday, December 16, at 4:15 p.m. in 136 DeBartolo. There will be a review session Friday, December 11, at 2 p.m. in 231 Hayes-Healy.

The final will cover chapters 1,2,5,6,7,8,9 and §§3.1-3.2, 4.1-4.2, 10.1, 10.3. On the exam you may use a summary (both sides of an $8\frac{1}{2}'' \times 11''$ sheet of paper, with notes in your writing) and your own calculator (which you don't need for the exam). I will provide the table for the normal distribution as part of the exam.

Here is an outline of the major topics we have covered. Topics marked with a † were covered after the material included on Exam 2.

- Probability
 - Sample space, random variable, events
 - Properties
 - Discrete sample space (possibly infinite), distribution functions
 - Continuous sample space, density function, cumulative distribution function
 - Inclusion-Exclusion Principle, including the special case

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- Computing probabilities
 - Sample spaces having equally likely outcomes
 - Using combinatorial analysis discrete sample space
 - Continuous case, uniform density
 - * Thinking of probability as a length or area
- Random variables
 - Distribution function of a discrete random variable
 - Probability density function, cumulative distribution function of a continuous random variable
 - Specific types of random variables
 - * Discrete
 - · Bernoulli random variable
 - \cdot Binomial random variable
 - \cdot Poisson random variable
 - \cdot Geometric random variable
 - Negative binomial random variable
 - Hypergeometric random variables

- * Continuous
 - \cdot Uniform density
 - \cdot Exponential density
 - $\cdot\,$ Normal density
 - $\cdot\,$ Beta density
 - $\cdot\,$ Gamma density
- Conditional probability
 - * Discrete and continuous cases
 - * Bayes' formula
 - * Independent events
 - * Joint distribution functions (discrete case)
 - * Joint density and cumulative distribution functions (continuous case)
 - $\ast\,$ Independent random variables
 - * Independent trials process
- Functions of a random variable
- Expected value for discrete and continuous random variables
 - Also called mean or expectation
 - Conditional expectation
- Variance
 - Standard deviation
- † Sums of independent random variables
 - + Convolution of discrete probability distribution functions
 - + Convolution of probability density functions
- † Chebyschev's inequality
- † Law of Large Numbers
- † Central Limit Theorem
- † Moments and moment generating function
 - † Discrete random variables
 - † Continuous random variables