Math 30650, Spring 2012

Review for Final

Themes

Note: Only themes 6 and 7 are new since the midterm. but there have been new applications of the others.

- 1. Linear problems
- The set of solutions of a linear homogeneous problem is a vector space.
- Two solutions of an inhomogeneous linear problem differ by a solution of the corresponding homogeneous problem.
- 2. An existence and uniqueness theorem tells you
- there is a solution to a problem satisfying the hypotheses;
- there is only one solution.

3. Once you have found enough independent solutions to a homogeneous linear problem Ly = 0,

- you can find all solutions;
- you can find all solutions to Ly = g starting with a particular solution y_p .
- 4. Good educated guesses often lead to solutions.

5. Transform a problem to a simple one, solve that, transform that solution back to a solution of the original problem.

- 6. Approximate a nonlinear problem by a linear one.
- 7. Look for solutions of a simple form; try to use them to build all solutions.

Specific Topics

Note: Only topics 5-7 are new since the midterm.

- 1. Higher order linear ODE
- Existence, uniqueness for initial value problem
- Solutions of nth order homogeneous equation form an n dimensional vector space
- Method of solving constant coefficient homogeneous equations

- 2. Numerical methods
- Euler's method, estimate for local truncation error
- Improved Euler
- Runge-Kutta
- Stability
 - Importance
 - Tests, methods of judging reliability of computer output (controlling error in dsolve(...,numeric), examining graphical output)
- 3. Solving ODE with MATLAB
- symbolic solution using dsolve
- numerical solution using dsolve
- 4. Systems of first order linear ODE
- Existence, uniqueness
- The solutions of an $n \times n$ linear homogeneous system form an n dimensional vector space
- Constant coefficient systems
 - diagonalizable, real eigenvalues
 - diagonalizable, complex eigenvalues
 - not diagonalizable
 - * Jordan Canonical Form
 - * only did real eigenvalues in this case
 - $\ast\,$ know how to find Jordan Canonical Form in 2×2 case
 - * know how to use it in general case
- Trajectories
 - interpretation of eigendirections
 - how to tell direction of motion
 - behavior as $t \to \pm \infty$
- Vector field
 - use in determining direction

- stability, type of critical point at origin
- inhomogeneous system
 - Not necessarily autonomous
 - Trajectory not necessarily independent of t
- 5. Nonlinear systems of first order ODE
- Autonomous systems
 - critical points, stability
 - using the linearization to determine type, stability, when possible
- More complicated cases
 - Repeated real eigenvalues (proper node, improper node or spiral point)
 - Imaginary eigenvalues (center or spiral point, indeterminate type)
- Use of phase portraits, direction fields to determine type, stability
- 6. PDE, Fourier series
- Separation of variables, especially for the heat equation
- Fourier series
 - What they are
 - If it looks like one, it is
 - Convergence theorem
 - Sine series, Cosine series
- More on the heat equation
- The wave equation
- 7. The Laplace transform
- Definition, use in solving initial value problems for ODE
- Discontinuous forcing functions (the Heaviside function or unit step function)
- Impulse forcing functions (the delta function)