Math 30650, Spring 2012

Review for Final

Themes

Note: Only themes 6 and 7 are new since the midterm. but there have been new applications of the others.

1. Linear problems

- The set of solutions of a linear homogeneous problem is a vector space.
- Two solutions of an inhomogeneous linear problem differ by a solution of the corresponding homogeneous problem.

2. An existence and uniqueness theorem tells you

- there is a solution to a problem satisfying the hypotheses;
- there is only one solution.

3. Once you have found enough independent solutions to a homogeneous linear problem $L y=0$,

- you can find all solutions;
- you can find all solutions to $L y=g$ starting with a particular solution y_{p}.

4. Good educated guesses often lead to solutions.
5. Transform a problem to a simple one, solve that, transform that solution back to a solution of the original problem.
6. Approximate a nonlinear problem by a linear one.
7. Look for solutions of a simple form; try to use them to build all solutions.

Specific Topics

Note: Only topics 5-7 are new since the midterm.

1. Higher order linear ODE

- Existence, uniqueness for initial value problem
- Solutions of nth order homogeneous equation form an n dimensional vector space
- Method of solving constant coefficient homogeneous equations

2. Numerical methods

- Euler's method, estimate for local truncation error
- Improved Euler
- Runge-Kutta
- Stability
- Importance
- Tests, methods of judging reliability of computer output (controlling error in dsolve(...,numeric), examining graphical output)

3. Solving ODE with MATLAB

- symbolic solution using dsolve
- numerical solution using dsolve

4. Systems of first order linear ODE

- Existence, uniqueness
- The solutions of an $n \times n$ linear homogeneous system form an n dimensional vector space
- Constant coefficient systems
- diagonalizable, real eigenvalues
- diagonalizable, complex eigenvalues
- not diagonalizable
* Jordan Canonical Form
* only did real eigenvalues in this case
* know how to find Jordan Canonical Form in 2×2 case
* know how to use it in general case
- Trajectories
- interpretation of eigendirections
- how to tell direction of motion
- behavior as $t \rightarrow \pm \infty$
- Vector field
- use in determining direction
- stability, type of critical point at origin
- inhomogeneous system
- Not necessarily autonomous
- Trajectory not necessarily independent of t

5. Nonlinear systems of first order ODE

- Autonomous systems
- critical points, stability
- using the linearization to determine type, stability, when possible
- More complicated cases
- Repeated real eigenvalues (proper node, improper node or spiral point)
- Imaginary eigenvalues (center or spiral point, indeterminate type)
- Use of phase portraits, direction fields to determine type, stability

6. PDE, Fourier series

- Separation of variables, especially for the heat equation
- Fourier series
- What they are
- If it looks like one, it is
- Convergence theorem
- Sine series, Cosine series
- More on the heat equation
- The wave equation

7. The Laplace transform

- Definition, use in solving initial value problems for ODE
- Discontinuous forcing functions (the Heaviside function or unit step function)
- Impulse forcing functions (the delta function)

