SOLVING FIRST ORDER LINEAR CONSTANT COEFFICIENT EQUATIONS

In section 2.1 of Boyce and DiPrima, you learned how to solve a first order linear ordinary differential equation using an integrating factor (typically called μ). Such an equation has the form $y^{\prime}+p(t) y=g(t)$. This method works for any first order linear ODE.

However, if the equation happens to be constant coefficient and the function g is of a particularly simple form, there is another way to think about the problem. The equation has the form

$$
\begin{equation*}
y^{\prime}+a y=g(t) \tag{1}
\end{equation*}
$$

where a is a constant. You can think of this as a special case of an nth order linear inhomogeneous ODE (with $n=1$). If you think of it that way, you can solve it the same way you solve higher order constant coefficient linear ODEs. Here's a sketch.

Step 1 Solve the corresponding homogeneous equation

$$
\begin{equation*}
y^{\prime}+a y=0 \tag{2}
\end{equation*}
$$

by looking for a solution of the form $y=C e^{r t}$. You find that $r=-a$. So the general solution to (2) is

$$
y_{c}=C e^{-a t} .
$$

Now, back to the original equation, (1). The general solution will be of the form

$$
y=y_{c}+y_{p}
$$

where y_{p} is a particular solution, that is, one solution you will find somehow. Step 2 will apply if $g(t)$ is of a particularly nice form. Suppose

$$
g(t)=p(t) e^{-a t}
$$

where $p(t)$ is a polynomial of degree k.
Step 2 Use the method of undetermined coefficients. Look for a particular solution of the form

$$
y_{p}=t\left(A_{0} t^{k}+A_{1} t^{k-1}+\ldots A_{k-1} t+A_{k}\right) e^{-a t}
$$

that is, t times a general polynomial of degree k, with undetermined coefficients which you need to determine, times an exponential. (You need the factor of t in front because the exponential term solves the homogeneous equation (2).) Plug y_{p} into the original equation (1). Then equate corresponding terms. This will give you $k+1$ equations for the $k+1$ undetermined coefficients A_{0}, \ldots, A_{k}. Solve these equations to determine the coefficients. Now you have found y_{p}.
(You can actually handle somewhat more general forms of $g(t)$, any form that can be handled for nth order equations by the method of undetermined coefficients, but this is the form of $g(t)$ which comes up when you are solving a system of the form $\mathbf{x}^{\prime}=J \mathbf{x}$ where J is a matrix in Jordan canonical form.)

Step 3 The general solution to (1) is

$$
y=C e^{-a t}+t\left(A_{0} t^{k}+A_{1} t^{k-1}+\ldots A_{k-1} t+A_{k}\right) e^{-a t}
$$

where A_{0}, \ldots, A_{k} are the coefficients you found in Step 2.

