Math 30650
Nancy Stanton

Jordan Canonical Form

A matrix B is a Jordan block if it is either of the form

$$
\begin{equation*}
B=\lambda I_{1 \times 1} \tag{1}
\end{equation*}
$$

where $I_{1 \times 1}$ is the 1×1 identity matrix or of the form

$$
B=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \ldots & 0 & 0 \tag{2}\\
0 & \lambda & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & 0 & \ldots & 0 & \lambda
\end{array}\right]
$$

Notice that a matrix of the form (2) has zeros below the diagonal, the same number λ in each entry on the diagonal, a 1 in each entry just above the diagonal and zeros every place else above the diagonal.

Theorem 1 If A is a complex $n \times n$ matrix, there is an invertible matrix T such that

$$
T^{-1} A T=J=\left[\begin{array}{cccc}
B_{1} & 0 & \ldots & 0 \tag{3}\\
0 & B_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & B_{k}
\end{array}\right]
$$

where each matrix $B_{i}, i=1 \ldots k$, is a Jordan block.
The matrix J is called the Jordan canonical form of A. The entries on the diagonal of J are the eigenvalues of A. If A is diagonalizable, J is a diagonal matrix, which we usually call D. So, the interest of this theorem is that it gives a similarity transformation from A to a matrix of a simple form for non-diagonalizable matrices A.

A generalized eigenvector of an $n \times n$ matrix A corresponding to the eigenvalue λ is a nonzero vector η which solves the equation

$$
\begin{equation*}
(A-\lambda I)^{k} \eta=0 \tag{4}
\end{equation*}
$$

For $k=1$ a solution η_{1} to (4) is just an eigenvector. To obtain generalized eigenvectors for $k \geq 2$, let η_{2} solve

$$
\begin{equation*}
(A-\lambda I) \eta_{2}=\eta_{1}, \quad(A-\lambda I) \eta_{3}=\eta_{2} \tag{5}
\end{equation*}
$$

etc.

How do you find the matrix T ? If the eigenvalues λ_{i} of the Jordan blocks B_{i} are distinct, you can let T_{i} be the matrix whose j th column is $\eta_{j}^{(i)}$ where $\eta_{j}^{(i)}$ is the j th generalized eigenvector of A with eigenvalue λ_{i},

$$
\left(A-\lambda_{i} I\right)^{j} \eta_{j}^{(i)}=0
$$

but

$$
\left(A-\lambda_{i} I\right)^{j-1} \eta_{j}^{(i)} \neq 0
$$

Then

$$
T=\left[\begin{array}{llll}
T_{1} & T_{2} & \ldots & T_{k} \tag{6}
\end{array}\right] .
$$

In general, the columns of T will be generalized eigenvectors of A, but the ones corresponding to two different Jordan blocks with the same eigenvalue will be harder to find.

