Math 30750
Spring, 2017

Assignment 12, due April 28

Read: §5.6 (again), §§5.7-5.8
Do:
$\S 5.6 \# 3,6,11,14$ Hint: In $14(\mathrm{a})$, to prove the triangle inequality first show that $f(x)=\frac{x}{1+x}$ is increasing.
$\S 5.7 \# 3,4,9$ In $\# 9$ change $(0, b)$ to $(0, b]$.

Additional problem:

(i) Show that if T is defined by

$$
T(f)(x)=1+\int_{0}^{x} f(t) d t
$$

then $T: \mathcal{C}\left(\left[0, \frac{1}{2}\right]\right) \rightarrow \mathcal{C}\left(\left[0, \frac{1}{2}\right]\right)$.
(ii) Show that T is a contraction where the metric is ρ_{∞} with

$$
\rho_{\infty}(f, g)=\|f-g\|_{\infty}=\sup _{\left[0, \frac{1}{2}\right]}|f(x)-g(x)| .
$$

(iii) Find the Picard iterates of the constant function 0, that is, let

$$
f_{1}=T(0), f_{2}=T\left(f_{1}\right), \ldots, f_{n+1}=T\left(f_{n}\right), \ldots
$$

Find a formula for f_{n}.
(iv) Find $f_{0}=\lim _{n \rightarrow \infty} f_{n}$ and show directly that f_{0} is a fixed point of T.

Assignment 13, due Wednesday, May 3

Reread: §5.8
Do: $\S 5.8$ \#1(a),(b), 3,4

