Review, Math 30750

Exam 1 is on Friday, February 24, 11:30 a.m.-12:30 p.m. and will cover everything we have done through §3.3, so Chapter 1, the non-starred sections of Chapter 2 and sections 3.1–3. What should you expect on the exam? There will be a multipart problem asking you for examples. You will be asked to state at least one definition or theorem. There will be two or three statements for you to prove.

Major Terms

- real numbers (ordered (axioms O1-5) field (axioms P1-9) satisfying Axiom of Completeness)
- countable set
- convergence of a sequence
- divergence to ∞ or $-\infty$
- bounded sequence
- Cauchy sequence
- greatest lower bound, least upper bound
- limit point
- continuous function (and equivalent ϵ, δ criterion)
- limit of a function
- uniformly continuous function
- partition, upper and lower sums
- Riemann integrable, Riemann integral

Major Theorems

- Cauchy criterion for convergence
- Convergence of bounded monotone sequences
- Existence of sup of set bounded above
- Bolzano–Weierstrass theorem
- A continuous function on a closed bounded interval is bounded. (Theorem 3.2.1)

- A continuous function on a closed bounded interval takes its inf and sup. (Theorem 3.2.2)
- Intermediate Value Theorem
- A continuous function on a closed bounded interval is uniformly continuous. (Theorem 3.2.5)
- A continuous function on a closed bounded interval is Riemann integrable. (Theorem 3.3.1)