
Some properties of the Riemann integral

Here are proofs of Theorems 3.3.3-3.3.5, Corollary 3.3.6 and Theorem 3.3.7 for any
Riemann integrable functions on [a, b]. Because the statements in the book are for
continuous functions I added ′ to the number of the theorem or corollary to distinguish
it from the corresponding one in the book.

Theorem 3.3.3′: If f and g are Riemann integrable on [a, b] and α, β ∈ R then
αf + βg is Riemann integrable on [a, b] and∫ b

a
(αf(x) + βg(x)) dx = α

∫ b

a
f(x) dx+ β

∫ b

a
g(x) dx. (1)

Proof: (i) If α ≥ 0, by §2.5 #8

sup
[c,d]

αf = α sup
[c,d]

f

for any subinterval [c, d]⊂ [a, b]. Hence for any partition P of [a, b], UP (αf) = αUP (f).
Also §2.5 #8 holds for the infinimum; for any S ⊂ R

inf{αx : x ∈ S} = α inf S if α ≥ 0.

Hence

inf
P
{UP (αf)} = inf

P
{αUP (f)} = α inf

P
{UP (f)} = α

∫ b

a
f(x) dx. (2)

Similarly LP (αf) = αLP (f) so

sup
P
{LP (αf)} = α

∫ b

a
f(x) dx. (3)

By (2), (3) and the definition of the Riemann integral, αf is Riemann integrable on
[a, b] and ∫ b

a
α f(x) dx = α

∫ b

a
f(x) dx. (4)

(ii) For any S ⊂ R,

sup
S

(−f) = − inf
S
f

Hence, UP (−f) = −LP (f) so infP{UP (−f)} = − supP{LP (f)} = −
∫ b
a f(x) dx. Simi-

larly, supP{LP (−f)} = −
∫ b
a f(x) dx so −f is Riemann integrable on [a, b] and∫ b

a
−f(x) dx = −

∫ b

a
f(x) dx. (5)

Combining (4) and (5) shows that (4) holds for any α ∈ R.
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(iii) Because f and g are Riemann integrable on [a, b], for any ε > 0 we can find
partitions P1 and P2 such that∫ b

a
f(x) dx− ε ≤ LP1(f) ≤ UP1(f) ≤

∫ b

a
f(x) dx+ ε (6)

and ∫ b

a
g(x) dx− ε ≤ LP2(g) ≤ UP2(g) ≤

∫ b

a
g(x) dx+ ε. (7)

Also, for any interval [c, d] by §2.5 #9

sup
[c,d]

(f + g) ≤ sup
[c,d]

f + sup
[c,d]

g

so for any partition P

UP (f + g) ≤ UP (f) + UP (g) (8)

and similarly

LP (f) + LP (g) ≤ LP (f + g). (9)

Adding (6) and (7) and using (8), (9) and Lemma 1 shows that if Q = P1 ∪ P2,∫ b

a
f(x) dx+

∫ b

a
g(x) dx− 2ε ≤ LP1(f) + LP2(g)

≤ LQf + LQg

≤ LQ(f + g)

≤ UQ(f + g)

≤ UQ(f) + UQ(g)

≤ UP1(f) + UP2(g)

≤
∫ b

a
f(x) dx+

∫ b

a
g(x) dx+ 2ε.

This holds for every ε > 0. Hence

sup
P
{LP (f + g)} = inf

P
{UP (f + g)} =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

Thus f + g is Riemann integrable on [a, b] and∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx. (10)

The theorem follows from (4), (5) and (10).

Remark: This result says that the Riemann integrable functions on [a, b] form a
vector space and integration is a linear operator (transformation) from this vector
space to R.
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Theorem 3.3.4′: If f and g are Riemann integrable on [a, b] and f(x) ≤ g(x) for all
x ∈ [a, b] then

∫ b
a f(x) dx ≤

∫ b
a g(x) dx.

Proof: Because f(x) ≤ g(x), for any partition P of [a, b], UP (f) ≤ UP (g). Hence any
lower bound for {UP (f)} is a lower bound for {UP (g)}. In particular,∫ b

a
f(x) dx = inf

P
{UP (f)} ≤ inf

P
{UP (g)} =

∫ b

a
g(x) dx.

Theorem 3.3.5′: If f is Riemann integrable on [a, b] then so is |f | and∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx. (11)

Proof: Let ε > 0 and let P be a partition of [a, b] such that UP (f)− LP (f) ≤ ε. Let
mi = inf [xi−1,xi] f, m

′
i = inf [xi−1,xi] |f |, Mi = sup[xi−1,xi]

f, M ′
i = sup[xi−1,xi]

|f |. There
are three cases.

Case (i): If mi ≥ 0, then M ′
i = Mi, m

′
i = mi so

M ′
i −m′

i = Mi −mi.

Case (ii): If Mi < 0 then M ′
i = −mi, m

′
i = −Mi so

M ′
i −m′

i = Mi −mi.

Case(iii): If Mi > 0, mi < 0 then M ′
i = max{Mi,−mi} and m′

i ≥ 0 so

M ′
i −m′

i ≤ max{Mi,−mi} < Mi −mi.

In each case

M ′
i −m′

i ≤Mi −mi

so

UP (|f |)− LP (|f |) ≤ UP (f)− LP (f) ≤ ε (12)

and, by Lemma 3, |f | is integrable. Now (11) follows from Theorems 3.3.3′ and 3.3.4′

since f(x),−f(x) ≤ |f(x)|.
Corollary 3.3.6′: If f is Riemann integrable on [a, b] then∣∣∣∣∣

∫ b

a
f(x) dx

∣∣∣∣∣ ≤ (b− a) sup
[a,b]

|f(x)|. (13)

Proof: By Theorem 3.3.5′

∣∣∣∣∣
∫ b

a
f(x) dx

∣∣∣∣∣ ≤
∫ b

a
|f(x)| dx.
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Now apply Theorem 3.3.4′ to the right side with g(x) the constant function sup[a,b] |f |.

Theorem 3.3.7′: If f is Riemann integrable on [a, b] and a < c < b then∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx. (14)

Proof: For any partition P of [a, b], let Pc be P if c is a point of P and the partition
obtained from P by adding the point c otherwise. Let P1 be the points in Pc which
are less than or equal to c, so P1 is a partition of [a, c], and let P2 be the points that
are greater than or equal to c so P2 is a partition of [c, b]. Then

LP (f) ≤ LPc(f) = LP1(f) + LP2(f) ≤ UP1(f) + UP2(f) = UPc(f) ≤ UP (f)

Hence

sup
P
{LP (f)} ≤ sup

P1

{LP1(f)}+ sup
P2

{LP2(f)} ≤ inf
P1

{UP1(f)}+ inf
P2

{UP2(f)} ≤ inf
P
{UP (f)}.

Since the right and left ends are equal to
∫ b
a f(x) dx,∫ b

a
f(x) dx = sup

P1

{LP1(f)}+ sup
P2

{LP2(f)} =
∫ c

a
f(x) dx+

∫ b

c
f(x) dx.
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