Some properties of the Riemann integral

Here are proofs of Theorems 3.3.3-3.3.5, Corollary 3.3.6 and Theorem 3.3.7 for any Riemann integrable functions on $[a, b]$. Because the statements in the book are for continuous functions I added ' to the number of the theorem or corollary to distinguish it from the corresponding one in the book.
Theorem 3.3.3': If f and g are Riemann integrable on $[a, b]$ and $\alpha, \beta \in \mathbf{R}$ then $\alpha f+\beta g$ is Riemann integrable on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b}(\alpha f(x)+\beta g(x)) d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x . \tag{1}
\end{equation*}
$$

Proof: (i) If $\alpha \geq 0$, by $\S 2.5 \# 8$

$$
\sup _{[c, d]} \alpha f=\alpha \sup _{[c, d]} f
$$

for any subinterval $[c, d] \subset[a, b]$. Hence for any partition P of $[a, b], U_{P}(\alpha f)=\alpha U_{P}(f)$. Also $\S 2.5 \# 8$ holds for the infinimum; for any $S \subset \mathbf{R}$

$$
\inf \{\alpha x: x \in S\}=\alpha \inf S \quad \text { if } \alpha \geq 0
$$

Hence

$$
\begin{equation*}
\inf _{P}\left\{U_{P}(\alpha f)\right\}=\inf _{P}\left\{\alpha U_{P}(f)\right\}=\alpha \inf _{P}\left\{U_{P}(f)\right\}=\alpha \int_{a}^{b} f(x) d x \tag{2}
\end{equation*}
$$

Similarly $L_{P}(\alpha f)=\alpha L_{P}(f)$ so

$$
\begin{equation*}
\sup _{P}\left\{L_{P}(\alpha f)\right\}=\alpha \int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

By (2), (3) and the definition of the Riemann integral, αf is Riemann integrable on [a, b] and

$$
\begin{equation*}
\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x \tag{4}
\end{equation*}
$$

(ii) For any $S \subset \mathbf{R}$,

$$
\sup _{S}(-f)=-\inf _{S} f
$$

Hence, $U_{P}(-f)=-L_{P}(f)$ so $\inf _{P}\left\{U_{P}(-f)\right\}=-\sup _{P}\left\{L_{P}(f)\right\}=-\int_{a}^{b} f(x) d x$. Similarly, $\sup _{P}\left\{L_{P}(-f)\right\}=-\int_{a}^{b} f(x) d x$ so $-f$ is Riemann integrable on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b}-f(x) d x=-\int_{a}^{b} f(x) d x \tag{5}
\end{equation*}
$$

Combining (4) and (5) shows that (4) holds for any $\alpha \in \mathbf{R}$.
(iii) Because f and g are Riemann integrable on $[a, b]$, for any $\epsilon>0$ we can find partitions P_{1} and P_{2} such that

$$
\begin{equation*}
\int_{a}^{b} f(x) d x-\epsilon \leq L_{P_{1}}(f) \leq U_{P_{1}}(f) \leq \int_{a}^{b} f(x) d x+\epsilon \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} g(x) d x-\epsilon \leq L_{P_{2}}(g) \leq U_{P_{2}}(g) \leq \int_{a}^{b} g(x) d x+\epsilon \tag{7}
\end{equation*}
$$

Also, for any interval $[c, d]$ by $\S 2.5 \# 9$

$$
\sup _{[c, d]}(f+g) \leq \sup _{[c, d]} f+\sup _{[c, d]} g
$$

so for any partition P

$$
\begin{equation*}
U_{P}(f+g) \leq U_{P}(f)+U_{P}(g) \tag{8}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
L_{P}(f)+L_{P}(g) \leq L_{P}(f+g) \tag{9}
\end{equation*}
$$

Adding (6) and (7) and using (8), (9) and Lemma 1 shows that if $Q=P_{1} \cup P_{2}$,

$$
\begin{aligned}
\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x-2 \epsilon & \leq L_{P_{1}}(f)+L_{P_{2}}(g) \\
& \leq L_{Q} f+L_{Q} g \\
& \leq L_{Q}(f+g) \\
& \leq U_{Q}(f+g) \\
& \leq U_{Q}(f)+U_{Q}(g) \\
& \leq U_{P_{1}}(f)+U_{P_{2}}(g) \\
& \leq \int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x+2 \epsilon
\end{aligned}
$$

This holds for every $\epsilon>0$. Hence

$$
\sup _{P}\left\{L_{P}(f+g)\right\}=\inf _{P}\left\{U_{P}(f+g)\right\}=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x .
$$

Thus $f+g$ is Riemann integrable on $[a, b]$ and

$$
\begin{equation*}
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x . \tag{10}
\end{equation*}
$$

The theorem follows from (4), (5) and (10).
Remark: This result says that the Riemann integrable functions on $[a, b]$ form a vector space and integration is a linear operator (transformation) from this vector space to \mathbf{R}.

Theorem 3.3.4': If f and g are Riemann integrable on $[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$ then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
Proof: Because $f(x) \leq g(x)$, for any partition P of $[a, b], U_{P}(f) \leq U_{P}(g)$. Hence any lower bound for $\left\{U_{P}(f)\right\}$ is a lower bound for $\left\{U_{P}(g)\right\}$. In particular,

$$
\int_{a}^{b} f(x) d x=\inf _{P}\left\{U_{P}(f)\right\} \leq \inf _{P}\left\{U_{P}(g)\right\}=\int_{a}^{b} g(x) d x .
$$

Theorem 3.3.5': If f is Riemann integrable on $[a, b]$ then so is $|f|$ and

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x \tag{11}
\end{equation*}
$$

Proof: Let $\epsilon>0$ and let P be a partition of $[a, b]$ such that $U_{P}(f)-L_{P}(f) \leq \epsilon$. Let $m_{i}=\inf _{\left[x_{i-1}, x_{i}\right]} f, m_{i}^{\prime}=\inf _{\left[x_{i-1}, x_{i}\right]}|f|, M_{i}=\sup _{\left[x_{i-1}, x_{i}\right]} f, M_{i}^{\prime}=\sup _{\left[x_{i-1}, x_{i}\right]}|f|$. There are three cases.

Case (i): If $m_{i} \geq 0$, then $M_{i}^{\prime}=M_{i}, m_{i}^{\prime}=m_{i}$ so

$$
M_{i}^{\prime}-m_{i}^{\prime}=M_{i}-m_{i}
$$

Case (ii): If $M_{i}<0$ then $M_{i}^{\prime}=-m_{i}, m_{i}^{\prime}=-M_{i}$ so

$$
M_{i}^{\prime}-m_{i}^{\prime}=M_{i}-m_{i}
$$

Case(iii): If $M_{i}>0, m_{i}<0$ then $M_{i}^{\prime}=\max \left\{M_{i},-m_{i}\right\}$ and $m_{i}^{\prime} \geq 0$ so

$$
M_{i}^{\prime}-m_{i}^{\prime} \leq \max \left\{M_{i},-m_{i}\right\}<M_{i}-m_{i}
$$

In each case

$$
M_{i}^{\prime}-m_{i}^{\prime} \leq M_{i}-m_{i}
$$

so

$$
\begin{equation*}
U_{P}(|f|)-L_{P}(|f|) \leq U_{P}(f)-L_{P}(f) \leq \epsilon \tag{12}
\end{equation*}
$$

and, by Lemma 3, $|f|$ is integrable. Now (11) follows from Theorems 3.3.3' and 3.3.4 ${ }^{\prime}$ since $f(x),-f(x) \leq|f(x)|$.
Corollary 3.3.6': If f is Riemann integrable on $[a, b]$ then

$$
\begin{equation*}
\left|\int_{a}^{b} f(x) d x\right| \leq(b-a) \sup _{[a, b]}|f(x)| \tag{13}
\end{equation*}
$$

Proof: By Theorem 3.3.5 ${ }^{\prime}$

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Now apply Theorem 3.3.4' to the right side with $g(x)$ the constant function $\sup _{[a, b]}|f|$.
Theorem 3.3.7': If f is Riemann integrable on $[a, b]$ and $a<c<b$ then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \tag{14}
\end{equation*}
$$

Proof: For any partition P of $[a, b]$, let P_{c} be P if c is a point of P and the partition obtained from P by adding the point c otherwise. Let P_{1} be the points in P_{c} which are less than or equal to c, so P_{1} is a partition of $[a, c]$, and let P_{2} be the points that are greater than or equal to c so P_{2} is a partition of $[c, b]$. Then

$$
L_{P}(f) \leq L_{P_{c}}(f)=L_{P_{1}}(f)+L_{P_{2}}(f) \leq U_{P_{1}}(f)+U_{P_{2}}(f)=U_{P_{c}}(f) \leq U_{P}(f)
$$

Hence
$\sup _{P}\left\{L_{P}(f)\right\} \leq \sup _{P_{1}}\left\{L_{P_{1}}(f)\right\}+\sup _{P_{2}}\left\{L_{P_{2}}(f)\right\} \leq \inf _{P_{1}}\left\{U_{P_{1}}(f)\right\}+\inf _{P_{2}}\left\{U_{P_{2}}(f)\right\} \leq \inf _{P}\left\{U_{P}(f)\right\}$.
Since the right and left ends are equal to $\int_{a}^{b} f(x) d x$,

$$
\int_{a}^{b} f(x) d x=\sup _{P_{1}}\left\{L_{P_{1}}(f)\right\}+\sup _{P_{2}}\left\{L_{P_{2}}(f)\right\}=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

