Math 40760, Fall 2009

Summary

Curves

- Local theory of parametrized curves
 - Parametrization by arc length
 - Frenet frame $\{t(s), n(s), b(s)\}$
 - Curvature, torsion and the Frenet equations
 - Fundamental Theorem of the Local Theory of Curves
 - Local canonical form (Taylor expansion of $\alpha(s)$ in terms of Frenet frame)
- Global theory of curves
 - Total twist
 - $\ast\,$ The total twist of a curve on the sphere is 0.
 - Fenchel's Theorem (Theorem 3 on p. 399)
 - Isoperimetric inequality

Surfaces—differentiable properties

- Regular surfaces, local parametrizations or local coordinates
- Differentiable functions on surfaces
- Tangent plane
- Differentiable maps between surfaces and their differentials
- Orientability

Surfaces—local geometry

- First fundamental form
 - Arc length of a curve on a surface
 - Area of a surface
- Gauss map and second fundamental form
 - Normal curvature
 - Principal curvatures, principal directions
 - Asymptotic directions, asymptotic curves

- Mean curvature
- Gaussian curvature
 - Types of points: elliptic, hyperbolic, parabolic, planar
 - How the surface sits in relation to tangent space (elliptic and hyperbolic points only)
- Vector fields on surfaces
- Types of special coordinates
 - Coordinate lines are orthogonal
 - Coordinate curves are asymptotic curves (hyperbolic case only)
 - Coordinate curves are lines of curvature (only guaranteed possible in neighborhood of nonumbilical point)
 - Isothermal coordinates
- Minimal surfaces
 - Criterion for minimal surface in isothermal coordinates

Intrinsic geometry of surfaces

- Intrinsic: only depends on I
 - Preserved by isometries
- Moving frames
 - Gauss equations
 - Weingarten equations
 - Cartan's structure equations
 - Codazzi equation
- Theorema Egregium
- Geodesic curvature
 - Geodesics
- Euler characteristic
- Gauss–Bonnet Theorem
- Index of a vector field at a singularity
- Poincaré's theorem