A self adjoint linear operator is diagonalizable

Suppose V is an n dimensional real inner product space.

Definition 1. A linear map $T: V \to V$ is self adjoint (or is a self adjoint linear operator) if

$$\langle Tv, w \rangle = \langle v, Tw \rangle$$
 for all $v, w \in V$.

Theorem 1. Let $T: V \to V$ be a self adjoint linear operator. Then T is diagonalizable and there is an orthonormal basis of eigenvectors.

Reminder: We applied this to the differential of the Gauss map $dN_p: T_pS \to T_pS$ where S is an oriented surface.

Note: A good way to understand the proof below is to go through it first for n = 2 then for n = 3 before tackling general n.

Proof. We prove this by induction on the dimension. The theorem is true if n = 1. Suppose it is true for self adjoint linear operators on n - 1 dimensional real inner product spaces.

Define a quadratic form

$$Q(v) = \langle Tv, v \rangle.$$

Then

(1)
$$\frac{1}{4} \Big(Q(v+w) - Q(v-w) \Big) = \langle Tv, w \rangle$$

so you can recover T from Q. (Verifying (1) requires using the facts that T is self adjoint and that the inner product is symmetric.)

Let

$$\lambda_1 = \max_{\{v \in V : |v|=1\}} Q(v).$$

The maximum exists because Q is a continuous function on the compact set

$$S_1 = \{ v \in V : |v| = 1 \}.$$

Pick $v_1 \in S_1$ with

(2)
$$Q(v_1) = \lambda_1.$$

(If n = 2, the case we need in this course, S_1 is the unit circle in $V \simeq \mathbf{R}^2$.)

By the method of Lagrange multipliers, with $f(v) = |v|^2$,

(3)
$$\nabla Q(v_1) = \lambda \, \nabla f(v_1).$$

for some λ . Now

$$\nabla Q(v) = 2T(v)$$
 and $\nabla f(v) = 2v$

so (3) becomes

(4)
$$Tv_1 = \lambda v_1$$

By (2) and (4),

$$\lambda_1 = Q(v_1) = < Tv_1, v_1 > = < \lambda v_1, v_1 > = \lambda < v_1, v_1 > = \lambda$$

The maximum λ_1 of Q on S_1 occurs at an eigenvector v_1 of T with eigenvalue λ_1 .

Let

$$W = v_1^{\perp} = \{ w \in V : \langle w, v_1 \rangle = 0 \},\$$

so W is the orthogonal complement of v_1 . Then W is a subspace of dimension n-1. (In the case n = 2, dim W = 1.) If $w \in W$

$$< Tw, v_1 > = < w, Tv_1 > = < w, \lambda_1 v_1 > = \lambda_1 < w, v_1 > = 0$$

so $Tw \in W$. Hence $T: W \to W$ and the restriction of T to W is self adjoint. By the induction hypothesis there is an orthonormal basis $\{v_2, \ldots, v_n\}$ of W consisting of eigenvectors of T. Then $\{v_1, v_2, \ldots, v_n\}$ is an orthonormal basis of V consisting of eigenvectors of T.

Remark: Similarly, the minimum of Q on S_1 occurs at an eigenvector of T.