A self adjoint linear operator is diagonalizable

Suppose V is an n dimensional real inner product space.
Definition 1. A linear map $T: V \rightarrow V$ is self adjoint (or is a self adjoint linear operator) if

$$
<T v, w>=<v, T w>\quad \text { for all } v, w \in V .
$$

Theorem 1. Let $T: V \rightarrow V$ be a self adjoint linear operator. Then T is diagonalizable and there is an orthonormal basis of eigenvectors.

Reminder: We applied this to the differential of the Gauss map $d N_{p}: T_{p} S \rightarrow T_{p} S$ where S is an oriented surface.

Note: A good way to understand the proof below is to go through it first for $n=2$ then for $n=3$ before tackling general n.

Proof. We prove this by induction on the dimension. The theorem is true if $n=1$. Suppose it is true for self adjoint linear operators on $n-1$ dimensional real inner product spaces.

Define a quadratic form

$$
Q(v)=<T v, v>
$$

Then

$$
\begin{equation*}
\frac{1}{4}(Q(v+w)-Q(v-w))=<T v, w> \tag{1}
\end{equation*}
$$

so you can recover T from Q. (Verifying (1) requires using the facts that T is self adjoint and that the inner product is symmetric.)

Let

$$
\lambda_{1}=\max _{\{v \in V:|v|=1\}} Q(v)
$$

The maximum exists because Q is a continuous function on the compact set

$$
S_{1}=\{v \in V:|v|=1\}
$$

Pick $v_{1} \in S_{1}$ with

$$
\begin{equation*}
Q\left(v_{1}\right)=\lambda_{1} . \tag{2}
\end{equation*}
$$

(If $n=2$, the case we need in this course, S_{1} is the unit circle in $V \simeq \mathbf{R}^{2}$.)
By the method of Lagrange multipliers, with $f(v)=|v|^{2}$,

$$
\begin{equation*}
\nabla Q\left(v_{1}\right)=\lambda \nabla f\left(v_{1}\right) \tag{3}
\end{equation*}
$$

for some λ. Now

$$
\nabla Q(v)=2 T(v) \quad \text { and } \quad \nabla f(v)=2 v
$$

so (3) becomes

$$
\begin{equation*}
T v_{1}=\lambda v_{1} \tag{4}
\end{equation*}
$$

By (2) and (4),

$$
\lambda_{1}=Q\left(v_{1}\right)=<T v_{1}, v_{1}>=<\lambda v_{1}, v_{1}>=\lambda<v_{1}, v_{1}>=\lambda
$$

The maximum λ_{1} of Q on S_{1} occurs at an eigenvector v_{1} of T with eigenvalue λ_{1}.
Let

$$
W=v_{1}^{\perp}=\left\{w \in V:<w, v_{1}>=0\right\}
$$

so W is the orthogonal complement of v_{1}. Then W is a subspace of dimension $n-1$. (In the case $n=2, \operatorname{dim} W=1$.) If $w \in W$

$$
<T w, v_{1}>=<w, T v_{1}>=<w, \lambda_{1} v_{1}>=\lambda_{1}<w, v_{1}>=0
$$

so $T w \in W$. Hence $T: W \rightarrow W$ and the restriction of T to W is self adjoint. By the induction hypothesis there is an orthonormal basis $\left\{v_{2}, \ldots, v_{n}\right\}$ of W consisting of eigenvectors of T. Then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal basis of V consisting of eigenvectors of T.

Remark: Similarly, the minimum of Q on S_{1} occurs at an eigenvector of T.

