Taylor's Theorem in several variables

In Calculus II you learned Taylor's Theorem for functions of 1 variable. Here is one way to state it.

Theorem 1 (Taylor's Theorem, 1 variable) If g is defined on (a, b) and has continuous derivatives of order up to m and $c \in(a, b)$ then

$$
g(c+x)=\sum_{k \leq m-1} \frac{f^{k}(c)}{k!} x^{k}+R(x)
$$

where the remainder R satisfies

$$
\lim _{x \rightarrow 0} \frac{R(x)}{x^{m-1}}=0 .
$$

Here is the several variable generalization of the theorem. I use the following bits of notation in the statement, its specialization to \mathbf{R}^{2} and the sketch of the proof:

$$
D_{j}^{\ell} f=\frac{\partial^{\ell} f}{\partial x_{j}}, \quad D_{u} f=\frac{\partial f}{\partial u}, \quad D_{i_{1} \cdots i_{k}} f=\frac{\partial^{k} f}{\partial x_{i_{1}} \cdots \partial x_{i_{k}}} .
$$

Theorem 2 (Taylor's Theorem) Suppose U is a convex open set in \mathbf{R}^{n} and $f: U \rightarrow \mathbf{R}$ has continuous partial derivatives of all orders up to and including m. Fix $\mathbf{a} \in U$. Then

$$
f(\mathbf{a}+\mathbf{x})=\sum_{k_{1}+\cdots+k_{n} \leq m-1} \frac{\left(D_{1}^{k_{1}} D_{2}^{k_{2}} \cdots D_{n}^{k_{n}} f\right)(\mathbf{a})}{k_{1}!k_{2}!\cdots k_{n}!} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}+R(\mathbf{x})
$$

where the remainder R satisfies

$$
\lim _{\mathbf{x} \rightarrow 0} \frac{R(\mathbf{x})}{|\mathbf{x}|^{m-1}}=0 .
$$

Specializing to $n=2$ and $\mathbf{a}=(0,0)$ and writing $u=x_{1}, v=x_{2}, k=$ $k_{1}, \ell=k_{2}$ gives

$$
f(u, v)=\sum_{k+\ell \leq m-1} \frac{\left(D_{u}^{k} D_{v}^{\ell} f\right)(0,0)}{k!\ell!} u^{k} v^{\ell}+R(u, v) .
$$

Taking $m=4$ gives

$$
\begin{aligned}
f(u, v)=f(0,0) & +D_{u} f(0,0) u+D_{v} f(0,0) v+\frac{1}{2!} D_{u}^{2} f(0,0) u^{2} \\
+ & \frac{1}{1!1!} D_{u} D_{v} f(0,0) u v+\frac{1}{2!} D_{v}^{2} f(0,0) v^{2} \\
& \quad+\frac{1}{3!} D_{u}^{3} f(0,0) u^{3}+\frac{1}{2!1!} D_{u}^{2} D_{v} f(0,0) u^{2} v \\
& \quad+\frac{1}{1!2!} D_{u} D_{v}^{2} f(0,0) u v^{2}+\frac{1}{3!} D_{v}^{3} f(0,0) v^{3}+R(u, v)
\end{aligned}
$$

where

$$
\lim _{(u, v) \rightarrow(0,0)} \frac{R(u, v)}{\left(u^{2}+v^{2}\right)^{3 / 2}} 0 .
$$

Sketch of proof: Let

$$
g(t)=f(\mathbf{a}+t \mathbf{x})
$$

Use the Chain Rule repeatedly to get

$$
g^{k}(t)=\sum\left(D_{i_{1} \cdots i_{k}} f\right)(\mathbf{a}+t \mathbf{x}) x_{i_{1}} \cdots x_{i_{k}}
$$

where the sum is over all ordered k tuples $\left(i_{1}, \cdots, i_{k}\right)$ and $1 \leq i_{j} \leq n$ for $j=$ $1, \cdots, k$. Now use the one variable Taylor's Theorem to write $f(\mathbf{a}+\mathbf{x})=g(1)$ as a polynomial of degree $m-1$ in x_{1}, \cdots, x_{n} plus a remainder, obtaining

$$
f(\mathbf{a}+\mathbf{x})=\sum_{k=0}^{m-1} \frac{1}{k!} \sum D_{i_{1} \cdots i_{k}} f(\mathbf{a}) x_{i_{1}} \cdots x_{i_{k}}+R(\mathbf{x})
$$

Finally, do the combinatorics to rewrite the sum with no repetitions (so, for example, you group the terms D_{12} and D_{21} together.)

