Taylor’s Theorem in several variables

In Calculus II you learned Taylor’s Theorem for functions of 1 variable.
Here is one way to state it.

Theorem 1 (Taylor’s Theorem, 1 variable) If g is defined on (a,b) and
has continuous derivatives of order up to m and ¢ € (a,b) then
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Here is the several variable generalization of the theorem. I use the fol-
lowing bits of notation in the statement, its specialization to R? and the
sketch of the proof:
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Theorem 2 (Taylor’s Theorem) Suppose U is a convex open set in R™
and f : U — R has continuous partial derivatives of all orders up to and
including m. Fiza € U. Then
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Specializing to n = 2 and a = (0,0) and writing u = z1, v = zy, k =
ki, { = ko gives
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Taking m = 4 gives
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Sketch of proof: Let
g(t) = fla+ tx).

Use the Chain Rule repeatedly to get
gk<t> = Z(Dlllkf)<a + tX) Ly = Ty,

where the sum is over all ordered k tuples (i1, -, i) and 1 <i4; < n for j =
1,- -+, k. Now use the one variable Taylor’s Theorem to write f(a+x) = g(1)
as a polynomial of degree m — 1 in xq, - - -, x, plus a remainder, obtaining
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Finally, do the combinatorics to rewrite the sum with no repetitions (so, for
example, you group the terms Dj5 and Dy; together.)



