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S u m m a r y  

The theoretical background of practical structural reliability methods encompassing numerical 
integration, approximate methods and simulation techniques is reviewed in the context of wind- 
excited structures. Their relative merits, shortcomings and limitations are addressed from the 
standpoint of their accuracy and computational efficiency. Quantitative reliability estimates of a 
concrete chimney are made, using different analysis procedures. Multiple potential failure modes 
are represented by the exceeding of the ultimate moment capacity at any level of the chimney 
height. The general bounds on the system failure probability are expressed in terms of the failure 
probability of the individual modes. The narrower bounds are established based on the existing 
theory by taking into account not only the failure probability of the individual modes, but also the 
joint failure probabilities in any two modes. Based on the findings of this study, it is suggested 
that the advanced first-order second-moment approximation and the simulation methods, which 
combine the Monte Carlo technique with variance reduction techniques, may provide accurate 
results for practical reliability analysis of wind-excited structures. 

1. In troduct ion  

Traditionally, structural safety in the design process is ensured by imple- 
menting appropriate safety factors to acknowledge shortcomings stemming 
from a lack of acknowledge, insufficient data or inherent variability in the 
problem parameters. The factor of safety concept does not provide a quanti- 
tative measure of the structural reliability. Even with the implementation of 
the safety factor, there exists a finite probability of failure of a structure. This 
is well recognized in the engineering community, but the concept of the safety 
factor is still widely accepted because of its simple nature and proven effec- 
tiveness for achieving safe design. The ensuring of structural safety by means 
of risk-consistent design requires assessment of uncertainties in the parameter 
space. This is followed by the propagation of uncertainties through the pre- 
scribed mathematical models of failure. 

Probabilistic assessment of structural safety is receiving increased attention 
and acceptance with the emergence of probability-based design formats such 
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as the load and resistance factor design (LRFD) approach [ 1,2 ]. The review 
of reliability analysis techniques presented here, with a detailed example of 
wind effects on structures, is intended to stimulate more interest and to initiate 
further applications of reliability concepts in this field. It is envisaged that  
similar efforts will help to close the gap further between the state-of-the-art 
and the state-of-the-practice in probability-based design in wind engineering. 

2. Theoretical background 

Randomness and uncertainties associated with both wind loads and struc- 
tural characteristics introduce variability in the dynamic response of wind- 
sensitive structures. The predicted response of structures based on mathemat- 
ical and statistical models with imperfect knowledge tends to depart from real- 
ity. Recent developments in the area of probabilistic methods and statistical 
inference offer a mathematical basis that  will enable designers to incorporate 
the influence of variabilities and uncertainties arising from a variety of sources 
more effectively into their design process. Some of these developments are 
discussed here from the standpoint of reliability of wind-sensitive structures. 

2.1. Component reliability 
The structural reliability analysis is accomplished by examining the limit 

states which describe the conditions that  render a structure unsatisfactory for 
one of the intended roles under one load effect or a combination of load effects. 
From the ultimate strength standpoint, the limit state equation is generally 
expressed in terms of the structural resistance and load effects, whereas, for 
serviceability, the limit state represents the evaluation of a performance cri- 
terion, e.g., the exceeding of acceleration in tall buildings above a prescribed 
value. It is worth calling attention to the fact that  it is often the serviceability 
limit state which governs the design of high-rise structures under winds. 

The two basic variables representing action and resistance are functions of 
a number of other variables. An increase in the number of variables in the limit 
state equation and the departure of their distributions from the normal to- 
gether with a nonlinear failure function introduces complexity to the problem. 
In this case, the limit state (M= R -  S = O) is a hypersurface in n-dimensional 
space, and separates the failure and safe regions. The probability of failure is 
equal to the volume integral over the failure region 

pf= ~ / x ( x ) d x  (1) 

M ( x )  <0  

in which ix (x) is the joint probability density function of the n-dimensional 
vector x. The preceding integral may be evaluated by means of one of the 
following techniques or a combination of them: (1) numerical integration, (2) 
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approximate methods, (3) simulation. In the following, a summary of these 
techniques is provided. 

2.2. Numerical integration 
The evaluation of the integral in eqn. (1) poses difficulties insofar as the 

description of the joint probability density of the system variables is generally 
not available. This is further compounded by the sizeable effort necessary to 
evaluate the integral involving a multiple numerical quadrature [3]. Approx- 
imations may be sought, but  these are restricted to special cases of limited 
practical application [4]. Alternatively, a reduction in the multiplicity of the 
two- and three-dimensional integrations is possible by invoking the Stokes and 
Gauss divergence theorem [5 ]. 

2.3. Approximate methods 
The approximate methods involve iterative algebraic techniques based on 

linearization of the limit state around an optimally chosen point. Linearization 
involves expansion of the limit state function into a Taylor series. By retaining 
the first-order terms, the failure surface is replaced with a hyperplane at the 
linearization point. This level of analysis is referred to as a first-order reliabil- 
ity analysis [5-9 ]. Generally, in practical situations, the information available 
on the resistance and load effects is only sufficient to estimate the first and 
second moments,  i.e. the total uncertainty in each random variable is charac- 
terized by its mean and variance. This leads to the generally known first-order 
second-moment (FOSM) format. For better approximation, one must retain 
some higher-order terms in addition to the first two terms in the Taylor series 
expansion of the limit state function. The formulation which retains second- 
order terms is referred to as a second-order reliability analysis (SOR) proce- 
dure [5-13]. 

The FOSM approach in its simplest form involves linearization of the limit 
state surface at the mean values of the basic variables. Subsequently, the prob- 
ability of failure may be expressed in terms of the uncertainties associated with 
the resistance and load effects. The first-order mean and variance of the limit 
state function M is given by 

/ ~ ,  M(:~l,X2,..., Xn) 

Li= '  j=l IkOXi/\OXj] 

The safety index or reliability index is expressed in terms of the mean and 
variances of the variables which appear in the limit state equation. If the vari- 
able M is assumed to be normal, the probability of failure pf is given by 
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P f = I - - ¢ ( ~ M ) = I - -  ¢(fl) (3) 

in which ~ ( .  ) is the cumulative probability of the standard normal variate 
and fl is the reliability index which is equal to M/aM. This approximation in- 
cludes errors that stem from the presence of nonlinearity in the description of 
the limit state function with non-normally distributed variables. Furthermore, 
the linearization at the mean values fails to be invariant from equivalent limit 
states derived from different algebraic formulations. The FOSM formulation 
evaluated at the mean values of the basic variables is referred to as the MFOSM 
approach. 

Alternatively, the limit state may be recast in terms of the reduced variables 
and linearized at the point on the failure surface closest to the origin, i.e. the 
point with the highest probability density. This point is generally referred to 
as the checking point or design point. This distance from the origin to the 
design point represents the reliability index ft. This method is generally re- 
ferred to as the advanced first-order second-moment (AFOSM) method, and 
it involves a search in the reduced transformed space for the point of maximum 
likelihood on the limit surface [ 5-9 ]. The correlated variables should be trans- 
formed to uncorrelated variables, for example, by means of the orthonormal 
eigenvectors of the covariance matrix [6,9]. The reliability index fl is the so- 
lution to a nonlinear optimization problem with a given constraint. It can be 
calculated by using an iterative algorithm [5-11]. The algorithm may not con- 
verge in all problems and may not be able to distinguish between maxima, 
minima or saddle points. A different selection of starting points and careful 
evaluation of results may help to alleviate this shortcoming. 

The probability of failure is approximated to first-order corresponding to 
the linearization of the failure surface, pf= ~ ( - f l ) .  The preceding concept 
may be further extended for problems with non-normal variables. For inde- 
pendent non-normal variables in the limit state equation, one possible choice 
involves transformation of the variables to equivalent normal variables [ 7- 
11 ]. For correlated non-normal variates, the Rosenblatt transformation is used 
[7-111. 

Optimization procedures may be used in place of iterative techniques for the 
evaluation of ft. In this context, determination of the minimum value offl may 
be cast as an optimization problem, where the distance from a point on the 
failure surface to the origin is minimized with the constraint that M ( X )  = O. 
Any nonlinear programming technique may be used efficiently to solve this 
minimization problem [5]. An attractive feature of this approach is that the 
problem may be analyzed in the original coordinates, thus alleviating the need 
for the transformation to reduced variates. The advantage of analysis in the 
original space is fully realized for the limit states that are not explicitly defined. 
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The probability of failure derived from the reliability index gives a "reason- 
able" estimate ofpf for practical engineering problems. The pf asymptotically 
is represented not only by the distance from the origin to the design point, but 
also depends on the principal curvature of the failure surface at the design 
points [12 ]. The size of the error introduced by linearization has been esti- 
mated for hyperspherical and parabolic limit surfaces in ref. 4. The difference 
between the exact and approximate solutions was found to be particularly dis- 
tinct for an example case with small curvature and large dimensions. 

As stated earlier, the first-order reliability methods may be improved by 
implementing the second-order reliability methods, in which the failure sur- 
face at the design points is approximated by a quadratic surface instead of a 
hyperplane. This approximation requires that the approximated quadratic and 
the actual failure surfaces at the design point have the same tangent hyper- 
plane and second-order derivatives. It has been suggested [13] that in view of 
the other uncertainties in the analysis, the first-order reliability method may 
be sufficient for the analysis of practical problems. 

2.4. Simulation methods 
Simulation techniques offer the most versatile means of computing the 

probability of failure by using either the evaluation of the multiple-fold inte- 
gration (eqn. (1)), or directly by simulating the failure phenomenon. Al- 
though the method may be used to solve virtually any reliability problem, the 
drawback is either in the statistical errors, or the cost of carrying out the nec- 
essary computations. The influence of the statistical uncertainties resulting 
from the use of only limited quantities of data to determine the statistical models 
and their parameters for simulation of the basic variables is inherent in the 
Monte Carlo simulation. For structures with very low probabilities of failure, 
a direct or a straightforward Monte Carlo simulation procedure may become 
computationally prohibitive. The Monte Carlo simulation technique may be 
made computationally more efficient by incorporating variance reduction 
techniques (VRT), e.g. conditional expectation, antithetic variates, impor- 
tance sampling, correlated sampling, control variates, stratified sampling, latin 
hypercube sampling and a combination of VRTs [4,15-25 ]. For example, the 
simulation time can be reduced by limiting the simulated data in the tail part 
of the joint distribution of the basic variables. This leads to a dramatic reduc- 
tion in the number of samples required, and the corresponding VRT is referred 
to as "importance sampling", which is briefly discussed later. 

The direct Monte Carlo simulation involves simulation of the basic random 
variables according to their joint probability density function (JPDF). The 
number of points fallen within the domain, divided by the total number of 
points generated gives an estimate of the probability of failure in accordance 
with eqn. (1). The unbiased estimator of the probability of failure is given by 
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1 N 
Pf =N i~ ~i (4) 

in which ~i--0, if M ( x )  > 0, ~i-- 1, if M ( x )  < 0, and N is the total number of 
cycles. 

The pf obtained by means of Monte Carlo simulation is not "exact" as is 
generally true with any numerical solution. The previous equation provides 
the expected value of the probability of failure and the variance depends on 
the number of cycles. The number of simulations required to attain a pre- 
scribed level of confidence can be established. 

The variance can be reduced by increasing the number of trials, but the 
number of cycles may not be increased beyond a certain limit because of the 
computational effort involved. If satisfactory results cannot be obtained with 
a reasonable number of trials, other means of reducing the error have to be 
sought. The VRTs, as pointed out previously, offer a means of reducing the 
variance of the simulated estimates of the failure probability without influenc- 
ing its expected value. Detailed description and mathematical background is 
available [ 15 ], and applications of some of these techniques to reliability anal- 
ysis have been addressed [4,15,21,23-25 ]. 

The unbiased estimate of the failure probability utilizing importance sam- 
pling is given by 

1 pf=~]. ~ (~i[X('Vi) (5) 
i=1 hv (~ri) 

in which ~i is a vector of sample values taken from hv ( ) which is the "impor- 
tance-sampling" probability density function and generally referred to as the 
sampling density. An optimal choice of the description of sampling density 
may reduce the variance ofpf to zero. Conversely, the variance of the estimator 
may actually increase because of a poor choice of the sampling density. One 
commonly used choice consists of using Ix (x) centered at the design points. 
In this manner, fewer points are required to estimate the probability of failure 
in comparison with the direct Monte Carlo simulation approach. The require- 
ment  of prior information on the design points often precludes the application 
of the importance sampling approach for problems on a single failure mode 
and lower nonlinearity in the failure surface. This is primarily a result of the 
suitability of the AFOSM approach in providing sufficiently accurate esti- 
mates ofpf once the design point is known. 

In this study, conditional expectation, antithetic variates and a combination 
of these were used to improve the computational efficiency of the direct Monte 
Carlo simulation for estimating the probability of failure of a chimney under 
wind loading. The conditional expectation helps to reduce the order of inte- 
gration in eqn. (1) and the variance of a simulated quantity by conditioning 
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on one or more of the basic variables appearing in the limit state equation with 
the least variance. The resulting conditional expectation is evaluated by a 
known theoretical expression. In this manner,  only the variables with the least 
variance are simulated and the major source of random fluctuation is removed 
by not directly generating the associated variables. The antithetic variates ap- 
proach involves introducing a negative correlation between the different sim- 
ulation runs that  leads to a reduction in the variation of the estimated quantity. 
By means of a pair of complementary random numbers for two cycles the de- 
sired negative correlation is conveniently introduced. Subsequently, a sample- 
mean of the simulated pair provides an explicit mathematical basis for vari- 
ance reduction. 

2.5. Alternative approximate methods 
Before proceeding to the next section, it is worth commenting on other ap- 

proximate methods available for the reliability analysis of wind-excited struc- 
tures. Central to some of these methodologies is the approximation of the PDF 
of the limit state function or safety margin and hence the probability of failure. 
The simplest approach involves application of the Edgeworth series or Gram- 
Charlier series expansions [26]. A combination of the numerical integration 
and curve fitting using the Pearson family of frequency curves may be used for 
an approximate evaluation of the reliability. Higher-order moments in con- 
junction with multivariate Hermite series and polynomials have been shown 
to reflect accurately a wide range of nonlinear behavior that  typifies distribu- 
tion tails governing reliability [ 27,28 ]. 

Generally, a closed-form expression for the limit state function is available; 
however, for certain applications only an implicit description is possible. In 
such problems, a polynomial function fitted to the data obtained from, e.g. 
computer code runs may be used for the reliability analysis. 

2.6. System reliability 
The t reatment  of a structural system requires the analysis of various possi- 

ble failure modes in which a system experiences loss of performance level either 
through its primary load-carrying role or deterioration resulting from exces- 
sive sway. Structural systems may be divided into two classifications, i.e. series 
and parallel systems. A series system fails to perform when any of its modes 
fail and survives only if all modes survive. A statically determinate structure 
performs like a series system. A parallel system fails only if all modes fail. The 
alternative load paths provide reserve resistance to the system against failure 
after the initial failure of any component. The behavior of a statically indeter- 
minate structure is similar to a parallel system. 

The exact evaluation of the reliability of a series system in terms of the 
failure probabilities in any mode, which are generally correlated, is not 
straightforward. Approximations are always sought. Several bounds on the 
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system probability of failure in terms of the individual failure modes and joint 
probabilities of failure in various modes have been suggested in the literature 
[e.g., 8,10,14,30,31 ]. Closer bounds are obtained if the joint probabilities of the 
failure in various modes are introduced. The analysis of a parallel system is 
more complicated and not as well developed as series systems, and is currently 
a subject of focused research. However, if the failure of a system is defined by 
the first failure of a component or a loss of serviceability at any location, the 
system may be treated as a series system. The example considered later in this 
paper belongs to a series system. 

The probability of failure of a series system with n possible failure modes is 
given by the union of failure events pf-- P [M1 kJ M2 U... W M n ]. The simplest 
bounds on the system failure probability may be expressed in terms of the 
failure probability of the individual modes 

n n 

Max P[M/] <pf< ~., P[M/] (6) 
i = l  i = l  

Closer bounds on p~ have been formulated in terms of the failure probabilities 
in any mode and the joint failure probabilities in any two modes [ 14 ] 

P[M,]+ max 0 , P [ M / ] -  x£,P[M/nMi] 
i = 2  j = l  

-<Pf-< ~ P[Mi]- ~ max(P[M/nMj]) (7) 
i = 1  i = 2  j< i  

The individual modes and joint failure probabilities are approximated by 

P[Mil-~f~(-fli) (8) 

P[Mi nMj] 

in which p/j represents the correlation between the linear safety margins and 
¢ ( ,  ;p) is the standard bivariate normal distribution. 

The Monte Carlo simulation can be used to calculate system reliability. The 
system probability of failure is given by 

Pf(sys) = f~x ]cx 
1 N 

x 

n 

in which ~x is an indicator function that  is equal to unity if • M~(x)_<1, 
i = 1  

n 

otherwise zero, and M/(x)  =0  represents the ith limit state function and u 
i = 1  

M/(x)  describes a union of n limit state functions. The importance sampling 
can be introduced to reduce the variance of the pf estimator by directly extend- 
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ing the concept used in the single-failure mode (i.e. component reliability). In 
this case, the sampling density is derived from a weighted summation of a 
number of sampling subdensities of the respective failure modes. Further de- 
tails on the application of importance sampling for system reliability may be 
found in refs. 4 and 29. 

3. Example 

Some of the concepts addressed in the preceding discussion on the reliability 
of structural components and systems will be illustrated in the following ex- 
ample of a wind-sensitive structure. This example will also shed light on the 
efficacy of some of the methods presented here from the standpoint of their 
relative advantages, disadvantages and accuracy. 

A tall reinforced concrete chimney is used to illustrate the practical struc- 
tural reliability techniques. The structural details of the chimney are given in 
ref. 32. Both the load effects and structural resistance parameters are treated 
as random variables. The limit states associated with the bending moment  
exceeding the moment  capacity of the chimney cross-section at any level are 
considered. 

The ultimate moment  capacity of the chimney cross-sections at various 
heights was computed using a second-order stress-strain relationship for con- 
crete [33]. The wind-induced load effects in both the along-wind and across- 
wind directions were formulated based on a covariance integration method 
[ 26,32,34 ]. The spectral description of the fluctuating wind load effects were 
used to predict the maximum bending moment  associated with the different 
wind speeds by means of random-vibration-based techniques [26,32 ]. The pre- 
dicted maximum values of the response were integrated with the meteorolog- 
ical statistics of the local climate. 

The wind speed records for the site were analyzed to estimate the parameters 
of the annual extreme wind distribution. The selection of the extreme value 
distribution may be made based on Gumbel's classical method, or statistical 
inference using extreme-order statistics [35,36]. It should be emphasized that  
the extreme upper tail of the wind speed distribution may have a significant 
bearing on the estimation of the failure probability associated with very small 
risks. The available data on extreme winds are often very limited, which pre- 
cludes validation of one distribution rather than another. The analysis of the 
tails of the distributions based on the extreme-order statistics offer alternative 
procedures to the traditional methods following the extreme-value distribu- 
tions [36 ]. The generalized Pareto distribution is being considered for mo- 
delling the extreme events [36-38]. This approach facilitates reliable esti- 
mates based on limited data and also offers a possible upper limit to the 
magnitude of the extreme event. Currently, this approach is being used to model 
rainfall and variations in ocean wave height. Application to the prediction of 
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the extreme wind events is immediate and is a subject of current interest. For 
this study the extreme value Type I, Type II, and Rayleigh distributions were 
fitted to the data using the methods of moments and maximum likelihood. 
According to the maximum probability plot correlation coefficient (MPPCC) 
criterion, the Type I distribution was the most representative model of the 
wind records at the site [32,39]. 

The uncertainties in the parameter space were analyzed and their effect was 
propagated by means of the MFOSM approach to assess the structural relia- 
bility. A total of 25 basic variables were studied initially [ 26 ]. From a sensitiv- 
ity analysis the number of variables was reduced to 13 for the present study. A 
description of the uncertainty analysis for the structural resistance and the 
load effects is omitted here for the sake of brevity; details may be found in refs. 
26 and 32. 

The lifetime failure probability of the example chimney is computed by means 
of MFOSM, AFOSM, direct Monte Carlo simulation and in conjunction with 
the variance reduction techniques. The procedures outlined earlier in the text 
are followed. A brief summary of the computational details involved in each 
technique is presented here to make this paper self-contained. 

3.1. Mean value first-order second-moment method (MFOSM) 
The coefficient of variation of the maximum lifetime structural response is 

expressed as [26,40] 

N (r) ~i) I ~,.,.2 , ,  -I- ~ [ O~(xn )max 2 
f2(X~'))m.. = -t,') (Xn )max[tJ(Xtnr')maxTi~l~" -'~X; ~2xiX~ 

O(X (r))max £i O(xy))ma x ~1/2 + Ei#jE Pxixj OX i OXj ~j ~xibe~xJ 2i~j 

( X (nr) )max = (X( lYtd) "{-X(~d) )ax(~') 

/~ 7C if(r) "~ a,x(,~, = /  ,-- x, / (10) 
. . . . . .  \ , , / (6 )  X(vta)] 

in which X(n r) represents a structural response component (e.g. moment  at the 
"_(1) nth node); 7 is Euler's constant; z(Vtd)=x/[21n(vtd)] and v = l / 2 ~ x n  / 

(o) . ax, ), r represents higher derivations of response variable; and f2 represents 
the coefficient of variation of the subscript variable. The derivatives appearing 
in the preceding equation involve very lengthy expressions and have been 
omitted here for brevity [26]. The value of axn for x ~') representing moment  
is given by 
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2 (~fiSFi(fi)27Ifi)r-4~ {~i}) 
i l l )  

in which [T] and [M] are the system transformation (which relates nodal 
forces to associated bending) and mass matrices and SFi ([i) is the model aero- 
dynamic force spectrum. The maximum static and dynamic along-wind and 
across-wind load effects are combined, assuming independence of these load 
effects using the SRSS rule. However, in the case where any correlation exists 
among the load effects, appropriate inclusion of the correlation in a combina- 
tion rule may result in a more realistic load combination. The uncertainty in 
the moment capacity representing resistance in combined axial loading and 
bending has been obtained on the basis of the FOSM approach and subse- 
quently validated by Monte Carlo simulation [33]. 

The second-moment statistics of the limit state function or failure margin 
are derived from the statistics of the resistance and load effects, assuming sta- 
tistical independence between them. The reliability indices and the associated 
probability of failure and their bounds are evaluated following the procedures 
outlined in the text. 

3.2. Advanced  first-order second-moment  me thod  ( A F O S M )  
The limit state equation is given by 

M = mR -- (mtot~l) max = 0 (12) 

In the previous equation mR and (mto t~)~  represent the ultimate moment 
capacity and maximum total applied load, respectively. As noted earlier, the 
expression for the total moments and the ultimate moment capacity are very 
lengthy, therefore, their documentation in this discussion is omitted [26]. The 
non-normal basic variables involved in these quantities are transformed to the 
equivalent normal variables as described earlier. This is followed by a search 
for the minimum value of fl and associated probability of failure at each node. 
The bounds on the system probability of failure are computed, following the 
procedure described earlier [14]. 

3.3. S imula t ion  techniques 

3.3.1. Direct s imulat ion 
The basic variables appearing in the limit state function were simulated to 

match their prescribed probability distributions. The probability of failure was 
estimated by simulating directly the failure phenomenon (eqn. (10)). 
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3.3.2. Variance reduction techniques (VRTs) 
3.3.2.1. Conditional expectation. Following the limit state function given in 

the previous section, the probability of failure is given by 

p f = P [ M  <O ] = P [  mc,,, > (m 2 - (mst +ma,) 2) 1/2] (13) 

in which mew, mu, mst and ma, represent the across-wind, ultimate, static and 
along-wind moments, respectively. The preceding equation may be recast into 
the form 

p f=P[mc , , ,>  zl mu, rast, real] (14) 

These equations reflect that the probability of failure is conditional on the 
parameters with lesser variability. 

The probability of failure is simulated for N cycles and the mean and vari- 
ance of the estimator ofpf is given by 

N 1 N 
15f= i=l~Pfl/N var(15f)-N(N-l)i~=l(Pf-15f)2 (15) 

3.3.2.2. Antithetic variates. In this technique a pair of separate simulation 
runs having a negative correlation are obtained for the failure probability. The 
average of the two runs provides an estimate of the mean failure probability 

1 N 
/Sf =~-~ i~l (p}ii ~ +P}i2~ ) (16) 

The variance of the failure probability is expressed as 

Vat (~f(')) + Var (pf(2)) + 2Coy (p(1), p f(2) ) 
Var (/~f) -- 4N (17) 

It follows from the previous equation that the antithetic variate would be ef- 
fective in reducing the variance if the covariance was strongly negative. This 
may be accomplished by using complementary random numbers to generate 
two runs in a pair, e.g. if Uk in a U(0,1) random variable is used in the first 
run, then 1 - Uk is used in the second run to simulate the same variables. It is 
important for the success of the method to use the uniformly distributed num- 
bers. The effectiveness in reducing variance of the simulated quantities may 
be impaired if other methods of generating random variables are used. The 
antithetic variates may be implemented in a simulation process in conjunction 
with other VRTs. In this study, the conditional expectation embedded with the 
antithetic scheme is used to compute the failure probability. 
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4. Resul ts  and discuss ion 

The results of a deterministic analysis are presented in Table 1. The applied 
moments  at various node levels are estimated from the distribution of wind 
pressure for which the chimney was designed (Fig. 1 ). The moments  computed 
from the dynamic analysis using lifetime maximum wind at the site are also 
tabulated. The moment  capacity at each level is used to compute the factor of 
safety against exceeding the ultimate moment  capacity. These safety factors 
do not take into account any random variability in the parameters or modeling. 
The computed values of reliability index, fl, obtained from the MFOSM and 
AFOSM are also reported in Table 1. Both the factors of safety and the relia- 
bility indices generally follow the same trend. 

The results from the MFOSM, AFOSM, and simulation techniques are plot- 
ted in Figs. 2-5 for the mean value of the structural damping varying between 
1 and 4%. These plots demonstrate that  the results obtained from the MFOSM 
approach are much lower than those from the other methods. Because of the 
nonlinear nature of the failure surface and some of the basic variables being 
non-normal, the results of the MFOSM tend to be least reliable. The results 
from this approach should be interpreted cautiously unless the limit state func- 
tion happens to be linear and the basic variables are normally distributed. 

T A B L E 1  

Deterministic and probabilistic analysis 

Node Height Diameter Moment  Wind- Factor Wind- Factor fl(1) fl~2) 
(ft) (ft) capacity induced of induced of 

(lb ft) moment  a safety moment  b safety 
(lb ft) (lb ft) 

2 538 37.64 5.4485X107 2.3610XI0 s 23 5.2806X106 10.3 6.13 2.81 
3 478 39.45 7.5343×107 9.5720×106 7.9 1.9937×107 3.78 3.69 2.08 
4 418 41.25 9.9183×107 2.1552X10 v 4.6 3.6023×107 2.75 2.99 1.91 
5 358 43.06 1.2564)<108 3.8434)<107 3.27 5.3492)<10 v 2.35 2.73 1.80 
6 298 44.86 1.5498)<108 6.0430)<107 2.56 7.9735X107 1.94 2.08 1.57 
7 238 46.67 1.8763×108 8.7758)<107 2.13 1.1033)<108 1.70 1.62 1.38 
8 178 48.48 2.2803)<10 s 1.2063)<108 1.89 1.4507)<108 1.57 1.38 1.25 
9 118 50.28 2.9533)<10 s 1.5926)<108 1.85 1.8324)<108 1.61 1.49 1.31 
I0 84 51.30 3.8166)<108 1.8372×I0 s 2.08 2.0645XI08 1.85 1.98 1.53 
11 54 52.21 4.2937×108 2.0651)<10 s 2.08 2.2685×10 s 1.89 2.08 1.57 
12 34 52.81 5.5886×I0 s 2.2230)<I0 s 2.51 2.4261)<108 2.31 2.80 1.81 
13 14 53.41 4.7131)<108 2.3858×10 s 1.98 2.5600)<108 1.84 1.98 1.54 
14 0 53.83 5.6815×108 2.5026)<108 2.26 2.7402)<10 s 2.07 2.38 1.69 

"Code recommended values. 
bRandom vibration-based analysis. 
fl(1) _ MFOSM. 
fl(2) _ AFOSM. 
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Fig. 2. Probability of failure at various nodes (damping ratio 1% ). 
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The bounds on the probability of failure of the example problem were com- 
puted following the procedures discussed earlier. Simple bounds obtained by 
eqn. (6) are reported in Table 2 for different methods of analysis and damping 
values. The results reflect the trends observed in the failure probabilities of 
the individual modes. The narrower bounds given by eqn. (7) were computed 
for the MFOSM and AFOSM approaches by implementing the correlation 
between the various failure modes. 

The narrower bounds on the failure probabilities computed on the basis of 
the correlations between the failure modes are also reported in Table 2. For the 
MFOSM approach, these bounds were only computed for the 1% damping case. 
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Fig. 4. Probability of failure at various nodes (damping ratio 3% ). 

The bounds for the AFOSM approach are sensitive to the ordering of the fail- 
ure modes. The failure modes arranged according to the increasing value of the 
associated reliability indices provide a good choice of ordering [ 13 ]. It is noted 
that  for the example problem the bounds obtained in this manner are almost 
coincident. 

The sensitivity of the reliability index to the variations in the parameter- 
space, e.g. basic variables in the limit state equation or the parameters of their 
distributions, is often sought in reliability studies. For example, it permits the 
delineation of the parameters whose variability may have significant influence 
on the reliability index or the associated failure probability. It can be shown 
that  the sensitivity of the reliability index to the variability in the basic vari- 
ables is given by the numerical value of the corresponding direction cosines 
[8]. The sensitivity factors for the basic variables in the example problem 
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TABLE 2 

Bounds on lifetime probability of failure 

Method 1% 2 % 3% 4% 
damping 

Lower Upper Lower Upper Lower Upper Lower Upper 

D-MC 0.1281 0.7411 0.0241 0.1264 0.0096 0.0545 0.00613 0.03853 
C-VRT 0.1179 0.6723 0.0169 0.0838 0.0052 0.0310 0.00348 0.02339 
A-VRT 0.1232 0.7137 0.0172 0.0952 0.0066 0.0362 0.00221 0.01331 
AFOSM 0.1055 0.7111 0.0102 0.0650 0.0029 0.0200 0.00146 0.01141 
AFOSM(N) 0.10553 0.10553 0.0102 0.0117 0.0029 0.0029 0.00146 0.00146 
MFOSM 0.0833 0.3040 0.0024 0.0059 0.00029 0.00067 0.00018 0.00008 
MFOSM(N) 0.09867 0.09922 

D-MC, Direct Monte Carlo; C-VRT, conditional VRT; A-VRT, antithetic VRT; AFOSM, ad- 
vanced FOSM; MFOSM, mean-value FOSM; (N), narrow bounds. 

together with the mean values, COVs and distributions are given in Table 3. It 
is noted that the reliability index is most sensitive to the structural and aero- 
dynamic damping, and the parameters associated with the across-wind re- 
sponse, e.g. the 8trouhal number and the lift or across-wind coefficient. This 
suggests that the across-wind response plays a significant role in the reliability 
of wind-excited chimneys. Omission of this component of response may have 
sizeable influence on the reliability estimates. 

It should be noted that in this study the probability of failure is computed 
for the mean value of the damping ratio ranging from 1 to 4%. For the rein- 
forced concrete structures, the damping value actually varies as a function of 
displacement. The analysis presented here can be extended to implement the 
variation of damping with amplitude in the evaluation of the load effects. How- 
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Variable Distribution Mean COV czi 

B - Bandwidth of across- Lognormal 0.25 0.3 0.0822 
wind spectra 

CD - Drag coefficient Lognormal 0.7 0.14 0.0155 
CL - Across-wind force Lognormal 0.15 0.27 0.4282 

coefficient 
f -  Natura l  frequency Lognormal - -  0.17 0.0777 
f y  - Steel yield stress Lognormal  71 000 psi 0.093 -0 .0892  
re' - Concrete compressive Normal  4000 ps i /3390 psi 0.18 -0 .00039  

stress 5000 ps i /4028 psi 0.15 
S - Strouhal  number  Lognormal  0.20 0.11 -0 .6122  
~¢ - Concrete compressive Normal  0.003 0.16 0.00924 

s t ra in  
- Aerodynamic damping Lognormal  - -  0.30 0.4019 

~s - Structural  damping Lognormal - -  0.35 -0 .4961  
V - Wind  speed, type I Ext reme value 52.91 m p h  0.101 0.026 
W -  Weight of chimney Normal  - -  0.094 - 0 . 1 1 2 8  

ever, a quantitative description of such a damping model for chimneys is not 
available, in part because of a lack of experimental data and complexity in the 
theoretical formulation. In the absence of such a damping description some 
empirical relationship may be used. 

The procedures discussed in this paper can be applied in other areas of wind 
engineering design, e.g. serviceability of tall buildings, glass design, wind tun- 
nel testing, low-rise structures and offshore structures. The software developed 
for this study is available on request. Additional examples on the reliability 
analysis of wind sensitive structures may be found in refs. 23 and 41-51. 

5. Concluding remarks 

Practical methods of reliability analysis of wind-excited structures, e.g. nu- 
merical, approximate and simulation techniques, are discussed. Their relative 
merits, shortcomings and limitations are highlighted from the standpoint of 
their accuracy and computational efficiency. 

Although the numerical integration provides accurate results, its application 
is restricted to problems of low dimension, which are rarely of practical inter- 
est. The FOSM approximations offer a convenient practical solution to multi- 
dimensional problems. However, the applicability of the MFOSM is restricted 
to problem domains with linear limit state functions and normal basic vari- 
ables. The AFOSM approach accounts for both the nonlinearity of the limit 
state functions and the non-normal basic variables. Although the second-order 
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reliability methods improve the first-order results, for most practical problems 
the first-order methods have been known to provide sufficiently accurate re- 
sults. The straightforward simulation techniques suffer from the drawback of 
statistical errors or the prohibitive computational  effort necessary for the large 
number of simulation cycles required to capture low failure probabilities. The 
direct simulation may be made computationally efficient by incorporating var- 
iance reduction techniques, e.g. conditional expectation, antithetic variates, 
importance sampling, stratified sampling and a combination of VRTs. 

The application of the FOSM methods and simulation techniques together 
with VRTs in the reliability analysis are illustrated by means of an example of 
a tall reinforced concrete chimney exposed to wind loads. The results demon- 
strate that  the advanced FOSM and the Monte  Carlo simulation in conjunc- 
tion with a VRT provide a good comparison of the failure probability. Based 
on the findings of this study, which involves a complex large-dimension prob- 
lem, it is suggested that  the advanced FOSM method and a combination of 
VRTs encapsulated within the Monte  Carlo simulation may provide suffi- 
ciently accurate results for practical reliability analysis of wind-excited struc- 
tures. The general and closer bounds on the failure probability of the example 
structure representing a series system are also evaluated. 
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