
TECHNICAL NOTES
Nonlinear Signal Analysis: Time-Frequency Perspectives
T. Kijewski-Correa1 and A. Kareem2

Abstract: Recently, there has been growing utilization of time-frequency transformations for the analysis and interpretation of nonlinear
and nonstationary signals in a broad spectrum of science and engineering applications. The continuous wavelet transform and empirical
mode decomposition in tandem with Hilbert transform have been commonly utilized in such applications, with varying success. This study
evaluates the performance of the two approaches in the analysis of a variety of classical nonlinear signals, underscoring a fundamental
difference between the two approaches: the instantaneous frequency derived from the Hilbert transform characterizes subcyclic and
supercyclic nonlinearities simultaneously, while wavelet-based instantaneous frequency captures supercyclic nonlinearities with a comple-
mentary measure of instantaneous bandwidth characterizing subcyclic nonlinearities. This study demonstrates that not only is the spectral
content of the wavelet instantaneous bandwidth measure consistent with that of the Hilbert instantaneous frequency, but in the case of the
Rössler system, produces identical oscillatory signature.

DOI: 10.1061/�ASCE�0733-9399�2007�133:2�238�

CE Database subject headings: Nonlinear analysis; Frequency analysis; Time series analysis; Transformation; Oscillations.
Introduction

Time-frequency analyses have received growing acceptance in a
variety of engineering and science disciplines, where the limita-
tions of the infinite bases of the Fourier transform have made the
investigation of localized or time-varying features impossible.
Among the various time–frequency transformations available, the
continuous wavelet transform �CWT� �e.g., Kijewski and Kareem
2003� and empirical mode decomposition with Hilbert transform
�EMD+HT� �Huang et al. 1998� are among the most popular. As
the performance of the former technique was called into question
by Huang et al. �1998�, and this misinterpretation of results has
continued in subsequent publications �e.g., Hwang et al. 2003;
Peng et al. 2005�, it is important to affirm its appropriateness for
the analysis of nonstationary and nonlinear signals. Such an
evaluation is reported in part in Kijewski-Correa and Kareem
�2006� and is continued here for the case of a number of classical
nonlinear systems.

The discussion of performance will focus on two quantities:
the analytic signal and the instantaneous frequency IF�t�, taken as
the derivative of the analytic signal’s phase. Space does not per-
mit a detailed discussion of the relevant theory, though one is
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provided in Kijewski-Correa and Kareem �2006� and textbooks
such as Carmona et al. �1998�. The analytic signal has been tra-
ditionally generated using the Hilbert transform, though, in the
case of multicomponent signals, the application of the Hilbert
transform must be preceded by a filtering operation to transform
the signal to a series of monocomponent signals. Recently it was
proposed by Huang et al. �1998� to replace this filtering process
by EMD, where a series of monocomponent signals or intrinsic
mode functions �IMFs� are generated by a progressive sifting op-
eration detailed in that reference. Alternatively, continuous wave-
let transforms of the analytic type can be applied to generate
analytic signals representative of the various components within
the signal. These analytic signal estimates are drawn from the
complex-valued wavelet coefficients along the stationary points
of the time–frequency map. The stationary points are time-scale
ordinates at which the frequency of the scaled wavelet coincides
with the local frequency of the signal forming a ridge in the
time–frequency plane at specific scales, which are inversely pro-
portional to the instantaneous frequency. The details surrounding
this theory are provided in a number of texts, including Carmona
et al. �1998�, which also discusses a number of techniques suit-
able for the extraction of ridges. Once these ridges are identified:
the instantaneous frequency can be extracted by one of two
techniques—again directly from the scale values forming the
ridges or by taking the derivative of the phase of the analytic
signal drawn from the wavelet coefficients along the ridge. One
class of analytic wavelet is the Morlet wavelet used in this study,
whose bases are comprised of a localized sine and cosine oscil-
lating at a central frequency f0.

While the notion of frequency at an instant may seem para-
doxical, it may be conceptualized as the frequency of a sine wave
that locally fits the signal under consideration. As such, it has
generally been accepted in the literature as the average frequen-
cies at each point in time �Priestly 1988�; the discussion has not
fully extended to consider the instantaneous bandwidth or spread

of frequencies contributing to this mean. As later examples will
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demonstrate, the spread about the instantaneous frequency is as
important in shedding light on the nature of the signal being ana-
lyzed as the instantaneous frequency itself. In the case of wavelet
transforms, at any time ti, a plot of the squared magnitude of the
wavelet coefficients yields an instantaneous spectrum, identifying
the dominant components within the system. Each component
peaks at its instantaneous frequency value with measurable
spread, characterized by the instantaneous bandwidth. Based on
the work of Cohen and Lee �1990�, let the instantaneous band-
width of a wavelet instantaneous spectrum S�f , t= ti� be defined as

B2 =�
f1

f2

�f − IF�ti��2�S�f ,t = ti��2df �1�

where the limits of integration are defined by the frequency range
associated with a given spectral peak. The definition of these
limits of integration is not generally straightforward for multi-
component signals. As a result, it is suggested herein to make use
of the half-power bandwidth �HPBW� estimator � �Bendat and
Piersol 1986�, since it is concerned only with the spectral peak
value. It should be noted that, while the wavelet bandwidth is
modified by the window contributions of the parent wavelet
�Kijewski-Correa 2003�, the HPBW measure can still be used to
track the relative variations of instantaneous bandwidth over time.

Applications

The following examples discuss the manner in which CWT and
EMD+HT characterize a number of classic nonlinear systems.
To aid in this discussion, the concept of subcyclic oscillations,
denoting changes in frequency that occur within a single cycle of
oscillation, is introduced. This is in contrast to supercyclic oscil-
lations, denoting changes in frequency that occur over the course
of one or more cycles or due to rapid changes in amplitude. For
systems possessing supercyclic characteristics, the wavelet will
capture these in its instantaneous frequency measure; however,
any subtle characteristics of subcyclic frequency variation are not
held in this measure. As Priestley �1988� indicated, the instanta-
neous frequency is an averaged measure of the frequencies
present at that instant in time. In the case of the Morlet wavelet,
this is essentially the frequency of the best-fit sinusoid to the data
over a shortened time window. However, if the signal deviates
from the sinusoidal form, sinusoids at neighboring scales also
bear some similitude with the signal over this same interval.
These deviations, which are often caused by subcyclic frequency
modulations, must locally be treated by a summation of neighbor-
ing harmonics, whose spread is captured by the instantaneous
bandwidth measure defined in Eq. �1� or by the HPBW. On the
other hand, the application of the Hilbert transform to a strictly
monocomponent signal yields an instantaneous frequency esti-
mate that captures both super and subcyclic oscillations simulta-
neously. However, it should be noted that the Hilbert transform
will inherit any limitations innate to the sifting process, e.g., the
residual traces of other frequency components in a given IMF—a
potential artifact of the nonorthogonality of the decomposition.

Readers should keep in mind that a proper understanding of
each approach and its implementation issues is critical to achiev-
ing valid results. For example, the resolution characteristics of
the Morlet wavelet are dictated by the central frequency param-
eter f0 and greatly impacts this wavelet’s ability to detect non-
linear characteristics, as demonstrated in Kijewski-Correa and

Kareem �2006� for the case of Stokian waves. The significance
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of resolution is also highlighted in this study in the case of the
Duffing oscillator. Another important consideration is the presen-
tation of results: EMD+HT results are plotted in the form of a
Hilbert spectrum, which displays the amplitude of the Hilbert-
transformed IMFs as a function of time and instantaneous fre-
quency, estimated from the analytic signal phase. Commonly in
the literature, e.g., in Huang et al. �1998�, these results are erro-
neously compared to wavelet scalograms, however, as discussed
in Kijewski-Correa and Kareem �2006�, the use of wavelet instan-
taneous frequency spectra �WIFS� insures an equivalent basis for
comparison.

Duffing Equation

One of the most well known nonlinear examples is the Duffing
oscillator under harmonic excitation described by a second-order
differential equation

d2x

dt2 + �1 + �x2�x = � cos �dt �2�

where �, �=constants, and �d=harmonic forcing frequency. The
term in parenthesis represents nonlinearity in the stiffness of the
oscillator, which will lead to a frequency that changes with am-
plitude and displays marked intrawave oscillations of both long
and short period �Huang et al. 1998�.

The response of the system in Eq. �2� is numerically simulated
using a fourth order Runga–Kutta scheme to determine if the
wavelet is sensitive enough to detect subtle nonlinearities, embod-
ied by a Duffing oscillator with �=−0.22, �=0.1. For a more
basic understanding of the behavior, the system is first released
from the initial conditions of x�0�=0 and ẋ�0�=1 and allowed to
freely vibrate, as shown in Fig. 1�a�. As evidenced by the power
spectral density �PSD� to the right of Fig. 1�a�, the dominant
Fourier frequency is at 0.143 Hz, with an additional peak around
0.425 Hz, which is at three times the primary frequency as a
result of the cubic nonlinearity in Duffing equation. The applica-
tion of a Morlet wavelet with f0=0.25 Hz, in order to achieve a
refined temporal resolution, yields a scalogram �Fig. 1�b�� and
WIFS �Fig. 1�c�� indicating a concentration of energy near
0.12 Hz. The frequency resolution of the scalogram can be im-
proved by selecting a larger central frequency, e.g., f0=2 Hz
�Kijewski and Kareem 2003�. The resulting scalogram and WIFS
are shown in Figs. 1�d and e�, respectively, which concentrate at
0.143 Hz, consistent with the spectral description in Fig. 1�a�. The
phase of the wavelet transform approximation to the analytic
signal can be used to provide a more precise identification of
instantaneous frequency, when lower frequency resolution wave-
lets are applied. This result is shown in Fig. 1�f� for f0=0.25 Hz,
identifying a frequency component at 0.143 Hz with oscillatory
characteristics described by the accompanying power spectral
density, which verifies a dominant frequency of oscillation at
0.145 Hz with a trace of oscillation at approximately twice
that frequency. By examining the instantaneous bandwidth for
f0=0.25 Hz �Fig. 1�g��, there is additional evidence of the subtle
nonlinearity of this system, with its accompanying power spectral
representation verifying that this oscillatory characteristic features
scales at the instantaneous frequency and twice its value. The
fluctuations of bandwidth describe the variation of the spread of
frequencies about the instantaneous frequency shown in Fig. 1�f�.
As the frames in Fig. 1 help to demonstrate, the bandwidth,
sensitive to signal amplitude, takes on its lowest values in the

signal’s troughs and peaks at the zero crossings of the signal,
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Fig. 1. �a� Duffing oscillator in free vibration, zoomed in from 50 to 100 s with power spectrum at right; �b� wavelet scalogram �f0=0.25 Hz�;
�c� WIFS �f0=0.25 Hz�; �d� wavelet scalogram �f0=2 Hz�; �e� WIFS �f0=2 Hz�; �f� instantaneous frequency identified by wavelet phase with
power spectrum at right �f0=0.25 Hz�; �g� wavelet instantaneous bandwidth with power spectrum at right �f0=0.25 Hz�; and �h� instantaneous
frequency identified by Hilbert phase with power spectrum at right
240 / JOURNAL OF ENGINEERING MECHANICS © ASCE / FEBRUARY 2007



where the Duffing oscillator is essentially a linear system, while
intermediate troughs occur at the signal maxima. These subtle
bandwidth fluctuations are a result of the nonlinearity in fre-
quency. A comparison of this result to the Hilbert transform’s
instantaneous frequency estimate, shown in Fig. 1�h�, reveals

Fig. 2. �a� Duffing oscillator in forced vibration; �b� wavelet scalog
identified by phase of WT with power spectrum at right; �e� wavelet in
at right; �f� Hilbert spectrum; and �g� zoom in of Hilbert spectrum fo
that the oscillatory components detected here are the same as
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those detected by the wavelet instantaneous bandwidth, as the
power spectral representation verifies oscillations at the instanta-
neous frequency �0.145 Hz� and near twice its value �0.284 Hz�.
Thus the periodicities in the nonlinear system are captured
by both the wavelet bandwidth and the Hilbert instantaneous

c� WIFS; �d� instantaneous frequency of high-frequency component
neous bandwidth of high-frequency component with power spectrum
IMF with power spectrum at right
ram; �
stanta
r first
frequency. It is also noteworthy that the wavelet instantaneous
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frequency did show a trace of the secondary nonlinear scale �see
the PSD in Fig. 1�f��, but lacked the resolution to fully charac-
terize it.

Looking at the forced response of the same system for
�d=1/50 Hz in Fig. 2�a�, the envelope of the signal now mani-
fests a low frequency oscillation as a result of the forcing func-
tion. Inspection of the wavelet scalogram in Fig. 2�b� reveals that
the signal is focused at 0.12 Hz with a second band at the heel of
the scalogram representative of the 0.02 Hz forcing function.
While the energy is clearly concentrated in the vicinity of
the oscillator’s dominant frequency, the higher frequencies of the
scalogram manifest a rippling indicative of fluctuations in the
frequency content with time. The instantaneous frequencies were
identified from the ridges of the transform and are shown in
Fig. 2�c�. Two dominant components were observed: one near
0.12 Hz and one corresponding to the forcing frequency near
0.02 Hz. Turning again to the instantaneous frequency estimate
from the wavelet’s analytic signal phase in Fig. 2�d�, the range of
oscillation of the instantaneous frequency is identified more pre-
cisely about 0.142 Hz, consistent with the previous example.
Note that the wavelet instantaneous frequency estimate manifests
a smooth regular periodicity. Again recalling that the wavelet
analysis fits small waves to the data, this instantaneous frequency
estimate is more representative of the best-fit frequency over
some short time interval but may not fully capture subcyclic
characteristics, though the power spectral density to the right of
Fig. 2�d� indicates oscillations of the instantaneous frequency at
two scales. Focusing on the instantaneous bandwidth in Fig. 2�e�,
a different perspective with a far more oscillatory characteristic is
evident due to the deviations from the mean frequency caused
by subcyclic nonlinearity. The box in Fig. 2�a� denotes a region of
downshift, during which the local signal mean shifts to lower
amplitudes, followed by an upshift. Note that both the frequency
and bandwidth qualitatively manifest local symmetry over
the downshift region. The power spectral frequency content of the
instantaneous bandwidth shows enhanced resolution over the
wavelet instantaneous frequency, now discerning beating of
modes at 0.12 and 0.16 Hz and at 0.24 and 0.28 Hz. This result
can be compared to the instantaneous frequency estimated via
EMD+HT. Two meaningful IMFs were identified, with the first
being of higher energy and associated with the oscillator
frequency while the second lower energy IMF was associated
with the forcing frequency, as shown by the Hilbert spectrum in
Fig. 2�f�. Note the parallels with Fig. 2�c�. The instantaneous
frequency associated with the first IMF, shown in Fig. 2�g�,
depicts again an oscillatory pattern about 0.142 Hz, which does
not separate the two contributors of frequency evolution like the
wavelet result, and thus provides an instantaneous frequency es-
timate whose peaks and troughs shift and lean in a repeating
pattern as a result of intrawave fluctuations. Its spectral represen-
tation denotes energy contributions in a beating pair of modes at
0.12 and 0.16 Hz, much like the wavelet bandwidth estimate,
though noting more energy at 0.27 Hz. This example verifies that
nonlinear energy content represented by the wavelet instanta-
neous bandwidth is consistent with the content in the Hilbert
spectrum.

Lorenz System

The Lorenz equation, initially proposed to study deterministic
nonperiodic flow, has been a widely studied system for the inves-

tigation of chaos. The system is described by
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ẋ = − �x + �y ẏ = rx − y − xz ż = − bz + xy �3�

where �, r, and b=positive constants, assumed to be 10, 20,
and 3, respectively, for the purpose of this example. The system
is released from its initial position of �10, 0, 0�, resulting in the
x component response shown in Fig. 3�a�, illustrating the tran-
sient characteristics of the system. The EMD+HT result gener-
ated by Huang et al. �1998� is provided in Fig. 3�f�, which re-
veals the characteristic intrawave frequency modulation. Note
the rapid decay of instantaneous frequency indicating super-
cyclic frequency modulation as well as the oscillations about
1.4 Hz due to subcyclic nonlinear behavior. Linearization of
the system by Huang et al. �1998� yielded a dominant fre-
quency of about 1.46 Hz—the mean frequency of the intrawave
modulations.

The scalogram �Fig. 3�b�� indicates that it has captured the
transient behavior, with the WIFS �Fig. 3�c�� providing an even
more clear representation. Consistent with the EMD+HT result
in Fig. 3�f�, the Morlet wavelet with f0=0.5 Hz, was capable of
detecting the marked frequency shifts due to the transient be-
havior in the first few seconds of the signal. This is characterized
by a shift in the low-frequency component from about 0.75
to 0.02 Hz. After this transition range, the wavelet detects a bi-
modal response, with the low-frequency response near 0.02 Hz
and the oscillator’s response at about 1.4 Hz, near the frequency
of the linearized system. The estimation of instantaneous fre-
quency of this mode becomes unreliable beyond 10–15 s, as
the signal’s energy decays, shown by the diminishing energy in
the scalogram. This observation is consistent with the EMD
+HT result in Fig. 3�f�. The subcyclic oscillations about 1.4 Hz,
occurring essentially in the decaying component of the response,
are subtly evident in the WIFS in Fig. 3�c�. To more closely
inspect these subcyclic oscillations, the instantaneous frequency
of this component is also identified from the wavelet analytic
signal phase. The result, shown in Fig. 3�d�, demonstrates that
subtle oscillations are detected by the wavelet phase, though not
of the magnitude detected by EMD+HT. The amplitude of
wavelet coefficients of the higher frequency component in Fig.
3�b� fall beneath 10% of their maximum value by the 10th sec-
ond, becoming essentially zero by the 20th second, again the
result of the rapid decay in Fig. 3�a�. The wavelet instantaneous
bandwidth of the high-frequency Lorenz component is also pre-
sented in Fig. 3�e� and indicates an oscillatory pattern with the
same periodicity as the instantaneous frequency, increasing from
0 to 6 s and then stabilizing. This is consistent with the EMD
+HT result in Fig. 3�f�, which also shows a definitive increase in
the spread about the instantaneous frequency up to 6 s, followed
by its stabilization.

Rössler System

The final nonlinear system investigated here is the Rössler system
described by

ẋ = − �y + z� ẏ = x + 1
5 y ż = 1

5 + z�x + �� �4�

where �=3.5. The system simulated by a first-order forward dif-
ference technique from the initial conditions �−4,4 ,0� is shown
in Fig. 4�a�. The EMD+HT analysis of this system by Huang et
al. �1998� is provided in Figure 4�g�. Note that the EMD of the
data yielded two meaningful IMF components, the dominant one
oscillating between 0.17 and 0.25 Hz.

Huang et al. �1998� states that in order “to represent such a

�system� with either Fourier spectrum or wavelet analysis, one
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would need many harmonics.” Indeed, a continuous wavelet
analysis may globally represent this system by a series of har-
monics if the temporal resolutions are insufficient to resolve the
nonlinearities, i.e., by selecting a large f0. The necessary resolu-
tion to avoid this can be determined by conducting a wavelet
analysis in tiers, using a fine frequency resolution in Stage 1 to
first identify the dominant components. This can be achievedus-
ing f0=5 Hz which yields two distinct components around 0.09
and 0.17 Hz, demonstrated in Figs. 4�b and c�. This information
then defines two frequency ranges over which to apply a more
temporally refined analysis in Stage 2. The first component, due
to its low energy, near 0.1 Hz was cited by Huang et al. �1998�
as some numerical artifact from the simulation of the system. As

Fig. 3. �a� Lorenz system x component; �b� wavelet scalogram; �c� W
phase�; �e� instantaneous bandwidth of high-frequency component; a
this component does not manifest marked temporal variation in
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the refined analysis, it will not be included in subsequent dis-
cussions. To track the time-evolving amplitude changes of the
component near 0.17 Hz a f0=0.25 Hz wavelet analysis is con-
ducted in Stage 2, resulting in the scalogram in Fig. 4�d�. Note
that the contours of the wavelet scalogram mimic the same oscil-
latory peaking of the frequency observed in the EMD+HT result
in Fig. 4�g�. The Stage 2 WIFS is generated in Fig. 4�e� and
reveals that the energy is primarily concentrated in an oscillatory
pattern between 0.137 and 0.166 Hz, with a period of oscillation
of 11.4 s.

As the scalogram fluctuations in the high-frequency range
indicate some variation of energy in time, an instantaneous band-
width analysis is performed. The results, shown in Fig. 4�f�,

� instantaneous frequency of high-frequency component �via wavelet
EMD+HT result �adapted from Huang et al. 1998�
IFS; �d
nd �f�
clearly demonstrate the behavior identified in Fig. 4�g�, with large
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peaks interlaced with smaller, rounded humps. Thus the dual
identification of instantaneous frequency and bandwidth from
the wavelet transform illustrates the ability of the Morlet wave-
let to characterize this nonlinear behavior, albeit differently
than EMD+HT, and questions the claim in Huang et al. �1998�
that “no other methods can match the resolution power displayed

Fig. 4. �a� Rössler system x component; �b� WIFS for analysis Stag
Stage 2; �e� WIFS for analysis Stage 2; �f� instantaneous bandwid
et al. 1998�
here.”
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Conclusions

This study examined the characterization of nonlinearities by the
continuous wavelet transform and empirical mode decomposition
with Hilbert transform. During the course of these discussions, an
important distinction between these two techniques was noted:

c� sample instantaneous spectra; �d� wavelet scalogram for analysis
analysis Stage 2; and �g� EMD+HT result �adapted from Huang
e 1; �
th for
the Morlet wavelet’s instantaneous frequency is only capable of

7



detecting nonlinearities in its truest mean sense, as it locally fits
windowed sinusoids to the data and is thus capable of detecting
only nonlinearities evolving over entire cycles of oscillation or
following significant changes in amplitude, referred to as super-
cyclic oscillations. Deviations from this mean frequency, carried
in the wavelet instantaneous bandwidth, are then capable of
capturing subcyclic oscillations. In contrast, EMD+HT carries
both super and subcyclic oscillations within its instantaneous
frequency estimate. It is shown in the example of the Duffing
oscillator that the spectral content of the wavelet instantaneous
bandwidth measure is consistent with that of the Hilbert instanta-
neous frequency. Further, the nonlinear characteristics carried in
the wavelet instantaneous bandwidth and the Hilbert transform
instantaneous frequency are shown to have the identical oscilla-
tory signature in the case of the Rössler system.
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