Network Structure and the Long Tail of Electronic Commerce

Arun Sundararajan
(joint work with Gal Oestreicher-Singer)

http://oz.stern.nyu.edu/
Economic ecommerce networks are informative

- Economic networks: generated by actions taken by (human) agents in commercial or economic situations
- Contain information about complex consumer preferences and product characteristics that is explanatory/predictive

Today’s talk

- Uses a component of Amazon’s co-purchase network
- (Weighted) PageRank: measures the “importance” of the network
- Gini coefficient: measures demand inequity
- Compute PageRank and Gini aggregated by category
- Higher PageRank \Rightarrow Lower Gini
- One interpretation: a more influential recommendation network is associated with a flatter demand distribution
Summary of data

Information Rules: A Strategic Guide to the Network Economy (Hardcover)
by Carl Shapiro, Hal R. Varian

List Price: $35.00
Price: $22.05 & eligible for FREE Super Saver Shipping on orders over $25. Details
You Save: $12.95 (37%)
Availability: Usually ships within 24 hours. Ships from and sold by Amazon.com.
Want it delivered Tuesday, May 9? Order it in the next 89 hours and 2 minutes, and choose One-Day Shipping at checkout. See details

142 used & new available from $3.72

Also Available in: List Price: Our Price: Other Offers:
Digital (Download: Microsoft Reader) $29.95 $18.87

Customers who bought this item also bought
The Economics of Information Technology: An Introduction (Raffaele Mattioli Lectures) by Hal R. Varian
Re-Thinking the Network Economy: The True Forces That Drive the Digital Marketplace by Stan Liebowitz
Crossing the Chasm by Geoffrey A. Moore
The Innovator's Dilemma: The Revolutionary Book That Will Change the Way You Do Business (HarperBusiness Essentials) by Clayton M. Christensen
The Economics of Network Industries by Oz Shy
Summary of data

Connected component of co-purchase network

- Gathered using Amazon’s XML service
- Depth-first crawl starting from popular book
- One graph per day, midnight
- Began August 2005, currently have about 600 graphs collected
Summary of data

Primary data

- Invariant: ASIN, Title, Author, List Price, Category, Number of pages, Release Date
- Daily: Sale Price, Sales Rank (3-hour intervals), identity of neighbors, secondary market prices

Derived data

- Daily demand (book level)
- Weighted PageRank (book level)
- Gini coefficient (category level)
Network evolution: summary

A
- Number of nodes (left scale)
- % of new nodes (right scale)

B
Number of new edges, as a % of total number of edges in the network

- **Between two new nodes**
- **With a new “source” node**
- **With a new “sink” node**
- **Between pre-existing nodes**
Network evolution: Degree distributions

In-degree (k) vs. probability ($p(k)$)

- 2/1
- 2/9
- 2/17
- 2/26
Properties of co-purchase networks

The network is very highly clustered

Distribution of clustering coefficients for a sample day

Average clustering coefficients over a month
Properties of co-purchase networks

Average shortest paths: 19 degrees of separation...

Distribution of average distances for a sample day

Average average distances over one month

- All nodes
- “Connected” nodes
Relating network structure, demand equity

Outline of approach

• (Weighted) PageRank: measures the “importance” of the network
• Gini coefficient: measures demand inequity
• Compute each aggregated by category
• Associate variations in PageRank with variations in Gini

Data

• 28 daily co-purchase networks
• Analyzed individually, also combined into four 7-day composite networks with edge weights
(Weighted) PageRank

Measure of the influence of the entire network

- Underlying model: Random surfer
- (Approximately) the steady-state probability of arriving at a particular page on the graph when surfing randomly
- Usually used as a network-based measure of page importance...
- ...but can also be interpreted as a measure of the extent to which a network structure influences a page

\[
\text{PageRank}(i) = \frac{(1 - \alpha)}{n} + \alpha \sum_{j \in G(i)} \text{Weight}(j,i) \left(\frac{\text{PageRank}(j)}{\text{OutDegree}(j)} \right)
\]

- For the daily networks, weights are all 1
SalesRank versus PageRank

(displayed for a sample)
The Gini coefficient

- Captures the extent to which demand is concentrated among the highest selling products in a group
- Measured by the area above the Lorenz curve

![Diagram](image-url)
Demand inequality: the Gini coefficient

The Gini coefficient

- Calculated for 200+ categories, comprising at least 100 books
- Compute average PageRank for each category as well

![Graph A: Science: Chemistry](image)

![Graph B: Computers and Internet: Web Development](image)
Network structure and the “long tail”

(recall: lower GINI => flatter demand, longer tail)

\[
\log[\text{GINI}] = a + b_1 \log[\text{AVGDEMAND}] + b_2 \log[\text{AVGPAGERANK}] \\
+ b_3 \log[\text{PAGERANKVAR}] + b_4 \log[\text{SIZE}] + b_5 \log[\text{AMIXING}]
\]

AVGDEMAND: Average demand for books in the category

AVGPAGERANK: Average PageRank for books in the category

PAGERANKVAR: Variance in PageRank across books in the category

SIZE: Number of books in the category

AMIXING: Fraction of co-purchase links to books within the same category
Network structure and the “long tail”

\[\log[\text{GINI}] = a + b_1 \log[\text{AVGDEMAND}] + b_2 \log[\text{AVG PAGERANK}] \\
+ b_3 \log[\text{PAGERANKVAR}] + b_4 \log[\text{SIZE}] + b_5 \log[\text{AMIXING}] \]
Network structure and the “long tail”

Products with lower Gini coefficients are those whose demand manifests a more prominent “long-tail”
Network structure and the long tail

Trade-press intuition for our findings

Higher average PageRank =>
Network has more influence on traffic? =>
more equal demand distribution
Economic ecommerce networks are informative

- Economic networks: generated by actions taken by (human) agents in economic situations
- Contain information about complex consumer preferences and product characteristics that is explanatory/predictive

Ongoing research

- Network characteristics (distance, clustering) and outcome variations (random utility versus location models of demand).
- Structural econometric model of network “peer effects”.
- Economic networks and demand prediction
- Identifying the influence of the network on individual products

http://oz.stern.nyu.edu/