How Student questions and answers can bring quality learning to your high school science class

Gordon Berry, University of Notre Dame Mary Hynes-Berry, Erikson Institute, Chicago

How to enhance student learning in a science modeling class (and everywhere else?)

The Essential ABCs of Learning

Always Be Conversing

Always Be Connecting

Always Build Competence (Competence)

First: Some introductory ideas: SIP, question taxonomy, modeling

Second: a modeling activity - to illustrate the question

Third: extending the conversation

Fourth: Does it work?

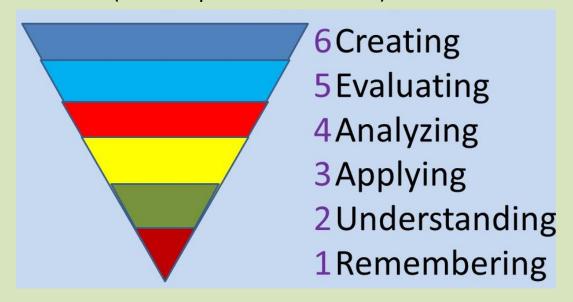
Analyzing our results, Evaluating learning Trying again.....

Conclusions: Can you help our research?

Tonight – a party for all.....

Are all your science classes Satisfying, Intentional and Problem-Solving (SIP) for all your students?

The **SIP principle** [<u>Satisfying</u>, <u>Intentional <u>Problem-Solving</u>] describes an effective classroom which uses these characteristics to reach the goal of quality intellectual student work.</u>

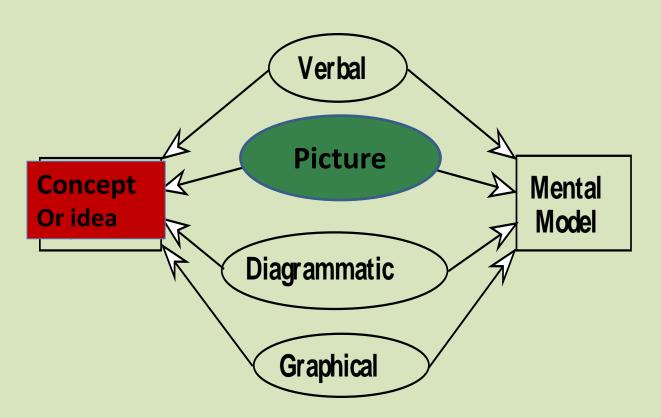

Satisfying: quality intellectual work which is engaging, intrinsically rewarding, and develops competence and confidence for the student

Intentional: students constructing models and strategies leading to the students' realization that they are building competence

Problem-solving: students developing their own progress milestones, accomplishing them and explaining their own achievements.

Do students take ownership of their learning when THEY are asking and answering their questions?

Bloom's taxonomy as an inverted pyramid (most important at the TOP)



A simplified taxonomy of questions (Mary Hynes-Berry)

- 3 Evaluating/Synthesizing Inquiry Abstract/Symbolic
- 2 Analyzing/Applying Inquiry Pictorial
- 1 Knowledge & Comprehension Inquiry Concrete

What do we mean by "Modeling"*?

MULTIPLE! Symbolic Representations

*Modeling in HS *physics* & *chemistry* as developed at Arizona State University The American Modeling Association – AMTA - http://modelinginstruction.org/

An important part of the modeling procedure is to give students a chance to show each other (and the teacher)

To help explain – in their own words -what they have been learning...

One "modeling" way: transfer their group ideas to large whiteboards Which can then be presented (in various ways) to the other students

We add to this Modeling presentation system:

"Student" Questions...... and their answers

As you all can expect, or know from experience, it is often **DIFFICULT** to persuade some (or most of the) students to make comments....**VERY OFTEN**, such discussions tend to be led or even monopolized by the teacher.

Let's try to CHANGE that.... (slowly, slowly)

A GROUP activity to illustrate modeling...with questions

A "Fermi" question for you: How many helium balloons do you need to lift a house?

Form a group of 3-4 people – you will need a "whiteboard", plus some writing implements.

- Discuss the question amongst your group:
 Does it trigger any thoughts about topics in high school science learning?
 In physics or in chemistry or in biology or in earth/space science.........
- 2. Prepare your whiteboard for a presentation to everybody, following the precepts laid out it the previous slide Include several representations e.g. verbal, algebraic, picture, diagram, graph....

Also include 2 questions raised by your group.......

Presentations

Do these numbers help?

Density of air = 2.5 kg/m³

Density of helium = 0.2 kg/m^3

Reflecting on today's exercise

Who is doing the thinking and learning?
Who is making connections?
Did you use all 8 science practice standards? (next slide)

Do you remember your own question(s)? Do you remember your own answer(s)?

Did you worry about "Peer pressure"?

Can you think of any extensions to this exercise that you might use in your classroom? Let's try......

The NGSS Framework of Scientific and Engineering Practices "The Practice Standards"

- 1. **Asking** questions & **defining** problems
- 2. Developing & using models ← ←
- 3. Planning & carrying out investigations
- 4. Analyzing & interpreting data
- 5. Using mathematics and computational thinking
- 6. Constructing explanations & designing solutions
- 7. **Engaging** in argument from evidence
- 8. Obtaining, evaluating, & communicating information

How many of these are STUDENT Developed and driven IN YOUR CLASSROOM?

The AIR Principle:

for teachers in all classrooms and all grades...

Attend & Intentionally Respond

Attend: Keenly observe and reflect on the observable indicators of disposition, engagement, and of level of understanding or of misconceptions and

Intentionally: plan what is likely to be a productive next step, based on observations and knowledge of the student as well as of developmental considerations

Respond in ways that will support the student in continuing to feel or be restored to feeling safe, valued and competent.

A second visit to questions....

PING PONG

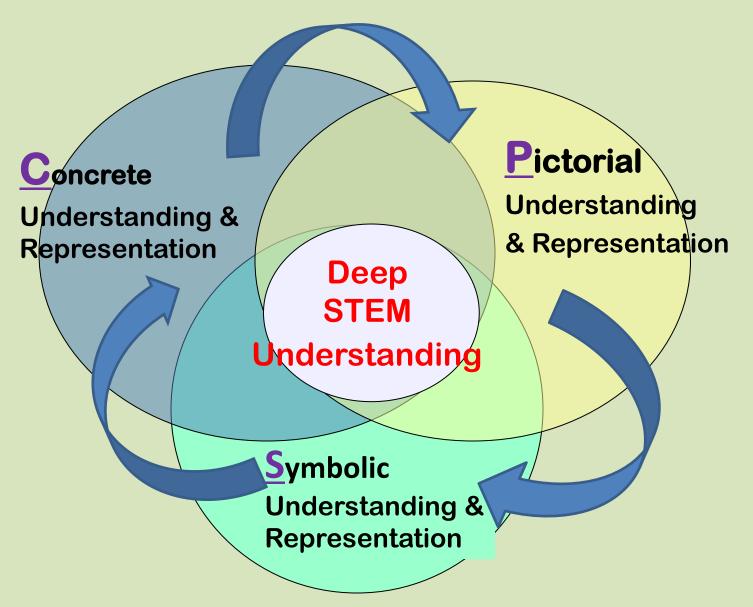
Facilitator/teacher asks a question; labels response right or wrong and then moves onto another question and another student

LOOPs (Batting practice)

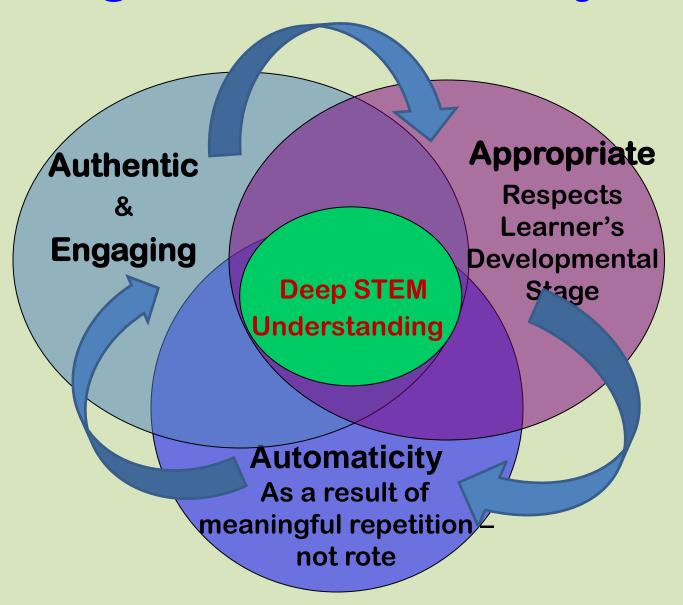
Teacher/facilitator/(student) and responder engage in more than a single exchange as
point is clarified or expanded. May involve
more than 1 participant

RICH CONVERSATIONS (Volleyball)

While the facilitator takes responsibility for guiding the conversation, all members of the learning community take active roles in commenting, questioning, offering clarifications and extending the thought.


Question Rungs on the Ladder of Inquiry

\/	
k 8h	
1 Cypu	
41	
M	
MAC	
MIT'	

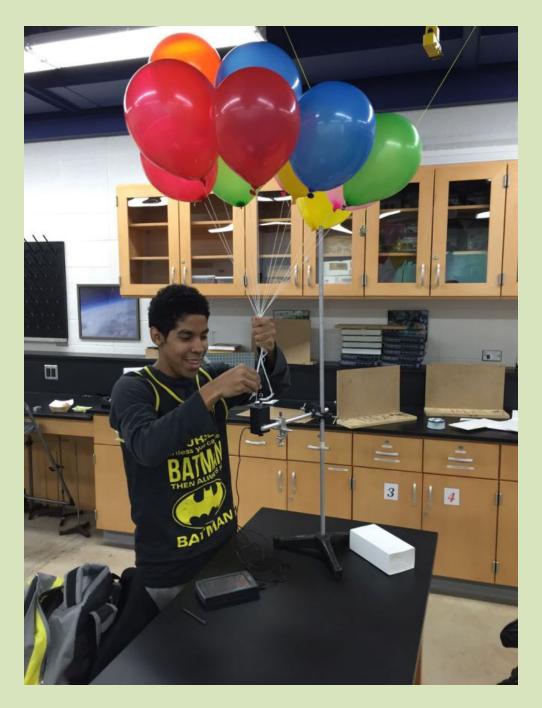

Reaching
For the top by going
up and
down

Closed Questions	Comprehension Level questions: "Right" or		
	"Wrong" Answers		
Level 3: Evaluating	Call for "higher order thinking"		
and synthesizing	Allow respondents to make highly personal,		
open questions	individual connections and synthesize		
	understandings in a unique and creative way.		
Level 2: Analyzing	involve inferences as well as comparisons or other		
open questions	kinds of structural analysis;		
	More than one response is possible, but all must		
	include explanations or support that are likely to		
	go back to the text or to further unpacking a		
	previous statement,		
Level 1: Unlocked	Ask for description, definition, examples from the		
closed	text		
comprehension	Useful for developing and clarifying		
questions	comprehension of the text as well as of a		
	respondent's meaning.		
Locked closed	Call for a yes or no or can be answered with a		
questions	single word or phrase. Often Ping Pong		
	interactions. Emphasis on rote recall		
	·		

The dynamic C-P-S Principle

Learning from each other by DOING

Our Follow-up group activity.....


Design a classroom experiment to help estimate how many balloons are needed to lift a house

In a few minutes, make up a whiteboard which includes

A - At least 3 representations – extra credit given for 4 or 5!! (verbal, picture, diagram, algebraic, graphical...)

B – and TWO questions – one each from levels 2 and 3....

- 3 Evaluating/Synthesizing Inquiry Abstract/Symbolic
- 2 Analyzing/Applying Inquiry Pictorial
- 1 Knowledge & Comprehension Inquiry Concrete

Helium balloons attached to a Vernier force probe

A personal request.....

I am looking for some research-based evidence
for the ideas presented today:
For enhancing the modeling teaching process
through the use of student questions

Would you be interested in helping?

The procedure will include a questionnaire to identify the changes between including and excluding student questions and answers Especially in whiteboard presentations

But also in other classroom formats

Please contact me now or later or by email at hgberry@nd.edu or at 574-514-4009 (cell)

Thank you for any help

Reflecting on today's session

Who is doing the thinking and learning?
Who is making connections?
Did you use all 8 science practice standards?

The ABCs of learning (Mary Hynes-Berry)

Always Be Connecting

Always Be Communicating

Always Build Confidence

Contacts: Gordon Berry: hgberry@nd.edu

NISMEC: http://www3.nd.edu/~nismec/nismec11.htm

HASTI - - February 12-13, 2015 NISMEC presentations and other Modeling presentations

N12M1	presentations	
Time	Title	Presenters
Thursday 8:30 am	How Student Questions and Answers Can Bring Quality Learning to Your High School Science Class	Gordon Berry Mary Hynes-Berry
Thursday 10:45 am	Modeling Chemical Bonds and Reactions with Legos	Craig Williams
Thursday 10:45 am	The Indiana Modeling Program for High School Science Teachers - Are You In It? Join Now!	Gordon Berry, Robert Pustek, Lynda Rose
Thursday 12:30 pm	The Scientist Notebook: A Rhythmic Framework to Guide Teachers and Students in Any Classroom Investigation	Joseph Bellina
Thursday 12:30 pm	So You Want to Try Modeling A Pedagogy Not a Curriculum	Lynda Rose
Thursday 1:30 pm	Focus Question and Making Meaning Conference, the Bookends for A Classroom Investigation	Joseph Bellina
Thursday 1:30 pm	How to Engage Students in a Whiteboarding Session	Lynda Rose
Thursday 2:30 pm	Using Goal-less Problems in the Chemistry and Physics Curriculum	Amanda Horan, Hugh Ross, Gary Pritts, Karen Kennedy
Thursday 2:30 pm	Making Sense of Graphs, a Natural Math Extension from Science	Joe Bellina
Friday 12:30 pm	Hoosier Modeling Connection: Q & A with New and Experienced Modelers	Erica Posthuma-Adams Amanda Horan, Lori White
Friday 8:30 am	AP Science Courses Redesigned: Impacts and Lessons Shared	Karen Morris, Maureen McGrail
Friday 8:30 am	Using Bar Charts to Introduce the Momentum Conservation Model	Hugh Ross, Ben Buehler, Ben Grimes
Friday 9:30 am	Physical Challenges: Using Lab Practicums in the High School Physics Classroom	Ben Buehler
Friday 12:30 pm	Hoosier Modeling Connection: Q & A with New and Experienced Modelers	Erica Posthum-Adams, Amanda Horan, Lori White
Friday 12:30 pm	Focus: Authentic Learning	Lori White
Friday 2:30 pm	Modeling Chemical Equilibrium: A Conceptual, Particle-Based Approach for High School Chemistry	Jeremy Horner

- 1 **The Indiana** ICP and Biology Modeling Curricula are available on the NISMEC website (Password required ask me)
- 2 Further details on the 2015 Modeling workshops are also available on the NISMEC website and will be updated on a regular basis this spring
- 3 For more information
 Visit the NISMEC booth at HASTI-2015
 and our website:

http://www3.nd.edu/~nismec/nismec11.htm