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 ABSTRACT

 The Euler equations derived from intertemporal asset pricing models, together with

 the unconditional moments of asset returns, imply a lower bound on the volatility of
 the intertemporal marginal rate of substitution. This paper develops and imple-

 ments statistical tests of these lower bound restrictions. While the availability of

 short time series of consumption data often undermines the ability of these tests to
 discriminate among different utility functions, we find that the restrictions implied

 by a number of widely studied financial data sets continue to pose quite a challenge

 to the current generation of intertemporal asset pricing theories.

 RECENT EMPIRICAL RESEARCH ON asset pricing has examined restrictions on

 the volatility of a representative consumer's intertemporal marginal rate of
 substitution (IMRS) implied by asset returns data. The pioneering work of
 Hansen and Jagannathan (1991) shows that the Euler equations derived
 from a broad range of intertemporal asset pricing models, together with the
 first two unconditional moments of asset returns, imply a lower bound on the

 volatility of the IMRS. For an IMRS with a given mean, they derive and
 compute the minimum standard deviation it must possess. The goal of their

 work is to restrict the parameter space for a given class of preferences that
 can be used to understand the dynamics of asset pricing and to evaluate the
 degree of difficulty encountered by intertemporal asset pricing models in
 explaining asset returns from various data sets. The purpose of this paper is
 to develop and implement a statistical procedure for judging whether a
 particular model of preferences meets Hansen and Jagannathan's lower
 volatility bound.

 The computation of the lower volatility bound has recently developed into a
 widely used diagnostic tool for assessing the usefulness of a number of classes
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 of preference orderings. For example, Burnside (1990), Epstein and Zin
 (1991), Hansen and Jagannathan (1991), Heaton (1991), and Ferson and
 Harvey (1992) all compare the lower volatility bound, computed from stock
 and bond returns data, with estimates of the mean and standard deviation of
 the IMRS implied by various utility functions, computed using data on
 aggregate U.S. consumption. In addition, Snow (1991) examines higher order
 moments, Bekaert and Hodrick (1992) apply the volatility bound analysis to
 the study of international equity returns data, and Backus, Gregory, and
 Telmer (1993) use these methods in an attempt to understand foreign cur-
 rency returns.1

 Thus far, researchers have primarily applied this analysis by comparing
 point estimates of the volatility bound with point estimates of the mean and
 standard deviation of the IMRS implied by a specific utility function. While
 the comparison of point estimates may be useful for some purposes, there will
 be occasions when the investigator will want to employ formal tests of the
 restrictions that are implied. This paper proposes and carries out such a test.2

 Our approach is to formulate a procedure that accounts for the two sources
 of uncertainty that arise in the comparison of the mean and standard
 deviation of the IMRS implied by a particular model of preferences with the
 bound that is computed from asset returns data. First, because the volatility
 bound itself is estimated from the data, it is random. Second, the computation
 of the mean and standard deviation of the IMRS using a specific utility
 function relies on estimates of the moments of the consumption process, and
 so it too is random. As a consequence, a formal statistical evaluation of the
 restrictions imposed by the implied lower volatility bound can be conducted
 with a test of whether the difference between two random variables is zero.

 We apply our test to four extensively studied data sets, and three popular
 preference specifications. These include both annual and monthly data on
 consumption, equity returns, and short-term Treasury debt, as well as data
 that combine monthly U.S. consumption data with monthly Treasury bill
 term structure data and with monthly U.S. dollar returns on five major
 foreign currencies. The utility functions we consider are a one-lag model of
 consumption durability, a one-lag habit persistence model, and the conven-
 tional time-separable constant relative risk aversion (CRRA) model.

 An important issue that we address concerns the relative size of the two
 sources of sampling variation that are present in our test statistic. For high
 degrees of relative risk aversion, we find that the uncertainty induced by
 random returns in the estimation of the lower volatility bound, for a given
 mean of the IMRS, is small relative to the uncertainty in the calculation of
 the mean and standard deviation of the IMRS based on a model of prefer-
 ences. Put differently, most of the variation in the comparison of the two

 1 The recent paper by Cochrane and Hansen (1992) provides a survey of work on this topic.
 2 Burnside (1991) has independently devised a set of tests that are similar to the ones

 discussed in Section I. In addition, Hansen, Heaton, and Luttmer (1993) describe an alternative
 testing methodology.
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 random variables in our test is the result of uncertainty induced by estima-
 tion of the mean of the IMRS. This, in turn, is the consequence of uncertainty
 contained in the consumption data, which is relatively high. We find that the
 availability of relatively short time series of consumption data-less than 100
 years of annual data, and approximately 30 years of monthly data-seriously
 undermines the ability of tests that use the restrictions implied by the
 volatility bound to discriminate among different utility functions for the two
 data sets containing bond and equity returns. The restrictions implied by the
 Treasury bill term structure data and foreign currency returns data, on the
 other hand, continue to pose quite a challenge to the current generation of
 intertemporal asset pricing models.

 The remainder of this paper is divided into four sections. In Section I we
 begin with a review of Hansen and Jagannathan's method for computing the
 volatility bound from data on asset returns. This is followed by a description
 of the utility functions we examine, along with a discussion of the stochastic
 model for consumption. We then show how to compute the IMRS implied by
 the class of preferences we consider, and derive the statistic used to test
 whether a model meets the restrictions implied by the volatility bound.
 Section II reports results of the applications we study. Section III discusses
 how to impose the restriction that the IMRS is nonnegative and reformulates
 the testing methodology appropriately. Using this modified procedure, we

 examine the implication for two of our applications-the annual data on
 consumption, equity returns, and Treasury debt, and the monthly data on
 consumption and returns on three-, six-, and nine-month Treasury bills.
 While the nonnegativity restriction raises the volatility bound of the IMRS,
 the standard errors grow so much that the test provides less evidence against
 the null hypothesis. Finally, Section IV provides concluding remarks.

 I. A Testing Framework

 The purpose of this section is to derive a test to evaluate whether a particular
 model of preferences is consistent with the restrictions implied by Hansen
 and Jagannathan's volatility bound. We begin in Section I. A with a review of
 the method used to compute the bound from data on asset returns.

 In Section I.B we describe the specific utility functions that we examine.
 These include simple forms of preferences that allow for either consumption
 durability or habit persistence, as well as the conventional CRRA case. In
 order to derive the mean and standard deviation of the IMRS implied by the
 durability and habit persistence specifications, we require knowledge of the
 consumption process. Section I.C describes the stochastic model for consump-
 tion that we employ. To this end, we assume that the consumption growth
 rate follows a random walk in annual data, and a first-order autoregression
 in monthly data. Section I.D then presents the derivation of the mean and
 standard deviation of the IMRS for the examples we consider.
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 Finally, Section I.E describes the statistical testing procedure we employ to
 determine the class of preferences that meet the Hansen and Jagannathan
 restrictions. Since both the bound itself and the implied volatility of the IMRS

 for a given utility function depend on data, the comparison of the model to the
 bound is a test of whether the difference between two random variables
 equals zero. We exploit this idea, together with standard asymptotic distribu-
 tion theory, in the derivation of the test.

 Throughout this section we ignore one important implication of asset
 pricing theory-that the IMRS must always be nonnegative. Hansen and
 Jagannathan show that use of this information can substantially change the
 location of the volatility bound, and so it can further restrict the set of models
 that meet the restrictions implied by the bound. We defer discussion of this
 nonnegativity restriction until Section III, where we present a testing frame-
 work in which it is incorporated.

 A. The Hansen-Jagannathan Volatility Bound

 We begin with a brief description of the derivation of the lower volatility
 bound on the IMRS first suggested by Hansen and Jagannathan (1991).3 The
 starting point is the set of Euler equations implied by intertemporal asset
 pricing problems. We write these as

 qt-l = Et-1(V(1)

 where E, _-) is the conditional expectation given information at t - 1, qt-1
 is an (n x 1) vector of asset prices at date t -1, xt is the corresponding
 vector of date t asset payoffs, and vt is the intertemporal marginal rate of
 substitution, which is the discounted ratio of marginal utilities at t and

 t - 1. In returns form, qt- 1 may be a vector of known constants and xt a
 vector of gross returns. For example, qti might be a vector of ones, so that
 each asset is defined to command a unit price in return for a stochastic
 "payoff" equal to its gross return.

 To continue, take unconditional expectations of both sides of equation (1),
 and use the law of iterated expectations, to obtain

 Uq = E(vt x), (2)

 where yq is defined as the unconditional expectation of qt- 1, E(qt- 1). Next,
 define /Lv = E(vt), av2 = E(vt - )2, = E(xt) and I = E(xt - A)(xt -
 A,u and then project (vt - ,a), the deviation of the IMRS from its mean,
 onto (xt - x), the deviation of the asset payoffs from their means, to obtain
 a set of coefficients p,u such that

 (vt - AV) = (xt - AX)'PV + Ut, (3)

 3In addition to the exposition in Hansen and Jagannathan, and the one presented below, there
 are numerous ways to describe the derivation of the volatility bound. See, for example, Cochrane
 and Hansen (1992) for another alternative.
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 where ut is the projection error. Using the definitions of the unconditional
 means and variances, we can write

 = -'4 E(x~ Pv =, Ex [ t - Ax)(Vt - AA)

 = 141[E(x AVt) -

 = E 1 [/Jq - uLXVI ], (4)

 where the last equality in (4) makes use of the Euler equation (2). Now, using

 (3) and (4), together with the fact that the projection error ut is orthogonal to
 xt, we can derive the variance of the IMRS. We write this as

 j2 = (q- ILv/x)'Y 1(q - yvx) +E(u2). (5)

 Since E(u2) is nonnegative, it follows that

 ? 2 ff -[( pq -,u ,u ~)41( LL- A ) 1/2 (6)

 The right-hand side of (6) is the lower volatility bound derived by Hansen

 and Jagannathan (1991) and we label it ox. Provided that ILq is not a
 zero-valued vector, the bound is a parabola in (pv, o-v)-space. As Hansen and
 Jagannathan note, the derivation of this volatility bound may be viewed as
 the dual to the mean-standard-deviation efficient frontier analysis in the
 theory of finance, except that there is no guarantee that the returns used to
 generate the IMRS volatility bound are on the efficient frontier.

 A common practice in examining the implications embodied in the lower
 bound is as follows. First, a point estimate of the bound is computed using

 point estimates of ,ux and >x from data on asset returns. Next, point
 estimates of A,u and o-v are computed using a particular utility function and
 consumption data. The investigator then asks which values (if any) of the

 preference parameters for the utility function result in (v,u av) pairs that lie
 inside the parabola.

 As we note in the introduction, this procedure may be useful for addressing
 certain issues. But the question we ask is whether the mean and standard
 deviation of the IMRS of the model is "close" to the parabola in a statistical
 sense. The purpose of the remainder of this section is to describe a method for
 answering this question.

 B. Preferences

 The main use of the volatility bound is to provide a set of restrictions that
 allow us to restrict the parameter space for a given class of utility functions.
 We begin by studying the utility functions examined by Hansen and Jagan-
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 nathan (1991). They assume that the period utility function displays constant

 relative risk aversion defined over consumption services derived at t, St.
 Expected utility is the discounted expected sum of period utilities, and is

 written as

 oo SI-,y- 1

 Ut=EtEpk =t+k (7)
 k=O (-1 - '

 where y is the coefficient of relative risk aversion, p is the discount factor,
 and consumption services are generated by a simple one-lag model in con-

 sumption expenditure, Ct, with coefficient 8:

 St c=Ct + 8Ct1 (8)

 This utility function includes three cases of interest. When 8 = 0, (7) is
 the familiar CRRA formulation. For 8 > 0, (7) implies that consumption
 purchases contain a durable component of the type studied by both Dunn and
 Singleton (1986) and Eichenbaum, Hansen, and Singleton (1988). Finally,
 negative values of 8 imply the kind of habit persistence Constantinides
 (1990) has found useful in explaining the equity premium puzzle.4

 Using (7) and (8), we can write the IMRS between t and t + 1 as

 p[S+7'y + p8Et?1(S72)]

 IMRStj ?1 = St-Y + p8EtjS-Q') (9)l

 We will use (9), together with consumption data, to compute the mean and
 standard deviation of the IMRS, given values of the preference parameters

 (p, y, 8). For the familiar CRRA case in which 8 = 0, IMRSt,t+1 = p
 (Ct+l?/Ct)-Y, we estimate the mean and standard deviation, ,u/ and o,
 nonparametrically from consumption data. For nonzero values of 8 we must
 evaluate the conditional expectations in (9) parametrically. This requires that
 we specify the stochastic process governing consumption growth.

 C. A Stochastic Process for Consumption Growth

 Our goal is to examine data at both annual and monthly frequencies. As
 such, we must select a model for both annual and monthly consumption
 growth. It is useful to begin with a brief description of the consumption data

 we study. The annual real consumption series we use is for per capita
 nondurables plus services. From 1889 to 1928, this series is the data used in
 Grossman and Shiller (1981), and was provided by Robert Shiller. Beginning
 in 1929, and continuing through 1987, we use the National Income and

 4We note that Heaton (1991) examines a model that combines aspects of both durability and
 habit persistence, while Ferson and Constantinides (1991) provide empirical evidence for this

 specification of the utility function.
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 Product Account series for real personal consumption expenditure on non-
 durables and services. Monthly data are the seasonally adjusted series on

 real per capita consumption of nondurables and services from April 1964 to
 December 1988 obtained from CITIBASE.

 In order to choose a stochastic model, we first estimate a fourth-order
 autoregression for the annual data, and a twelfth-order autoregression for
 the monthly data.5 The top panel of Table I reports ordinary least squares

 estimates of these simple autoregressions. The results clearly suggest that
 the annual data are well approximated by a random walk, and so this is the
 model that we use. For the monthly data, the coefficient on the first lag of
 consumption growth is - 0.2989 with a t-statistic of 6.3, and a Wald test fails
 to reject that the second through twelfth coefficients are zero simultaneously.
 The p-value of this joint test is 0.121. We take these results to suggest that
 monthly consumption growth can be accurately modeled as an AR(1). The
 final estimates are reported in the bottom panel of Table L*6

 D. The Mean and Standard Deviation of the IMRS

 Using the stochastic model for consumption growth, we can now compute
 the mean and standard deviation of the IMRS implied by the preferences
 described in Section I.B. We consider both the case in which the sampling
 interval for the data and the holding period interval over which returns are
 computed are the same, and the one in which they are not. For the case of
 monthly data, this means that we are examining monthly data on both one-
 and three-month holding period returns, using a stochastic model of con-
 sumption that is assumed to be monthly.

 We begin with the simpler case in which the holding period interval and
 the sampling interval coincide. First, write the consumption growth process
 with autoregressive parameter w as

 Mt = [L(l - ) + a)mt_l + ?6t, (10)

 where mt is the consumption growth rate, defined as ln(Ct/Ct- ) and Et is
 an i.i.d. normal random variable with mean zero and variance a,2. Using (10),

 5We find that our main results are robust to changes in the process for consumption. See
 footnote 15 below.

 6We realize that the AR(1) for monthly data does not aggregate to a random walk at an
 annual frequency. The inconsistency could easily be explained by the fact that the data are time
 averaged. As He and Modest (1991) point out, the most common method for dealing with this
 is to assume a process for spot consumption, and derive the statistical implications for time-
 aggregated consumption. Heaton (1993) examines this problem at length, and shows that use of
 data averaged over long periods of time reduces the impact of time-aggregation bias. For other
 discussions of the problems induced by time aggregation, see Grossman, Melino, and Shiller
 (1987) and Breeden, Gibbons, and Litzenberger (1989).
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 Table I

 Estimated Consumption Processes
 Estimated coefficients and standard errors for annual and monthly U.S. consumption growth

 rate autoregression: mt = -i woimt-i + et, where mt is the consumption growth rate with mean
 UC,, wi is the coefficient on the ith lag of consumption growth, and et is an i.i.d. normal
 innovation with variance o-2. The parameter estimates and their standard errors are taken from
 generalized method of moments estimates of the parameter vector 0 and its covariance matrix,

 So, and are robust to conditional heteroskedasticity.

 Panel A. Autoregressions

 Annual Data 1890-1987 Monthly Data 1964:4-1988:12
 (Fourth-Order Autoregression) (Twelfth-Order Autoregression)

 Coefficient Standard Error Coefficient Standard Error

 Constant 0.0185 0.0054 Constant 0.0011 0.0004

 (Oi - 0.0972 0.1398 (Oi - 0.2989* 0.0470
 ?02 0.1651 0.1343 ?02 0.0329 0.0521
 ?03 -0.0670 0.0904 ?03 0.1130 0.0544
 ?04 -0.0567 0.1085 ?04 -0.0254 0.0596

 ?05 0.0185 0.0549

 ?06 0.0117 0.0497
 ?07 0.0452 0.0517

 ?08 0.0801 0.0462

 ?09 0.0304 0.0531

 ?0io 0.1134* 0.0543
 ?011 0.1463* 0.0492

 ?012 0.0119 0.0504

 Panel B. Final Estimates

 Annual Data 1890-1987 Monthly Data 1964:04-1988:12
 (Random Walk) (First-Order Autoregression)

 Parameter Estimate Standard Error Estimate Standard Error

 .ULC 0.0172 0.0029 0.0016 0.0002
 C2 0.0012 0.0003 1.9e-5 1.5e-6
 ?o -0.2839 0.0511

 Asterisks indicate significance at the 5 percent level.

 the IMRS, (9), can be rewritten as

 IMRSt,t+1 =-Tmt, Mt+l)

 pe-ymt[(emt+l + 8)-y + p5e-Ymt+lEt+?(emt+2 + a) ] (

 (emt + 5) y + p5eY-rmtEt(emt+1 + ()11

 where the conditional expectation in (11) is calculated as

 Et(emt+l + )-y = f [e(/Ic(lw-&)+?wMt+?) + 8] %I'(8) de,
 8(mt)

 t 00 if 8?0 = ln(- 8) -w(1-c) - wmt if 8 < 0
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 and Ic( e) is the normal p.d.f. with mean zero and variance ((r2)*7 It follows

 from (10) that the unconditional distribution of (mt, m t+1) is bivariate
 normal

 [ mt+1 ] (C) c 02( )]

 We denote this distribution 'F(mt, mt+1 ). Now, using (11), we compute the
 mean and standard deviation of the IMRS as8

 = ff| '(m, m')F(m, m')dmdm' (12)

 and

 2 = ffk| f[(m im') - UU]%I(m, m') dm dm', (13)
 m m

 where

 J 0oo if 8?0
 M Xln(- 5) if 5 < O'

 7 The consumption process in (10) implies that ? can take on large negative values. When 8 is
 negative, and ? is sufficiently negative, then (11) would require that we calculate the value of a
 negative number raised to the power - y. This problem leads us to put a lower bound on the
 value of ? when we integrate the expression used to compute the IMRS. This lower bound is

 labeled e(mt). The definition of Et(emt+l + W)Y in (11) is not entirely consistent with the
 stochastic process for consumption being correct, since (10) permits ? to take on large negative
 values with nonzero probability. In practice, this is not a serious problem as the region of the
 sample space for which ? < e(mt) has negligible probability for all of the cases we consider. For

 example, let m* = , - 2 oJ,l V1 _ w2 be a value two standard deviations below the mean of mt,
 and z N(0, 1). Then using the estimates in Table I and 8 = -0.5, P(e < ln(-8) - ,j(1 - w)
 - wm*) is equal to P(z < -20.51) for the annual consumption process, and is equal to
 P(z < - 160) for the monthly consumption process. The quadrature rule we use to compute the
 discrete approximation to the normal density never strays into the portion of the density where

 ? < e(mt) so we obtain the same results regardless of whether the lower truncation on ? is
 imposed.

 8We introduce m in equations (12) and (13) for reasons exactly analogous to the ones
 that required E(mt) in equation (11). Again, it makes no difference to our results whether
 the lower truncation point is imposed because the region of the sample space excluded by the
 lower truncation has negligible probability. To see this, let z and z' be independent standard

 normal variates, a = (m - C) (1 - 02)/So and b(z) = (m - yt)/o, - wz/ l(1- _2). Then
 using the orthogonal transformation, m = ,u + ? oz/v(1 - 02) and m' = ,u+ ?
 ojw[oz + z'( (1- w2) ]/ (1- w2). Now, the probability of a realization in the region of
 the sample space rendered inadmissible by the lower truncation point is P[ z < a, z' < b(z)] =
 fafb((z)Ok(ZX() dz' dz where 'p&) is the standard normal p.d.f. With 8 = -0.5 and the
 estimates in Table I, we have a = b(z) = -20.51 for the annual consumption process. For the
 monthly process, we have a = -146.5 and the lower limit in the first integral is b(- 146.5) =
 - 196.21.
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 When the holding period interval is k periods, for a data-sampling interval
 of one period, then the relevant IMRS is the one from period t to period t + k.
 Using the consumption process (10), we can write this as

 k - 1

 IMRSt,t+k = A mt2 mt+k, E mt+i
 i=0

 = yk- lMt+ ) l[(eMt + 8) ' + p8e YMt+kEt+k(eMt+k+ I +(14) (eY~~~mt) { [(emt + 5)Y + p8eY-mtEt(emt+k1 + 8) (14)

 The consumption process implies that {mt, mt?k, Ek-o1 mt?i} is multivariate
 normal, given by

 mt

 mt+ k

 [Ek-1CM i=O t+i

 k Ek-1 oji

 k tc Ek-1 3i Ek 1iw k + 2 Ek-1 (k -i)j1

 which we label F.
 The analogs to (12) and (13) follow as

 00 00 00

 Ivk =f f |F(m, m', m")A(m, m', m") dmdm'dm" (15)
 -oo m m

 and

 auVk in | | m m', m") -,Uk]2A(mi, m', m")ddmdm'dm" (16)
 -00__

 with m defined as it is in the simple case above.
 In the applications, all of these integrals are evaluated using a 13-point

 Gauss-Hermite quadrature rule.

 E. Testing the Restrictions of the Volatility Bound

 We now examine whether the model implied value for the standard devia-
 tion of the IMRS is consistent with the bound derived from the asset returns
 data. This involves asking whether the model value estimated using con-
 sumption data, o6v, is near the bound implied by the asset returns data, using
 equation (6).

 In order to conduct such a comparison, begin by defining qJ as the vector of
 parameters associated with the stochastic process governing consumption

 growth. For the AR(1) model of Section I.C, tJ = ( , o, w). Next, define 4 as
 the vector of parameters that characterize the utility function, (p, y, 8).
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 Finally, recall that ,uq is the mean vector of the asset prices, and puX and IX
 are the mean vector and covariance matrix of asset payoffs.

 We now stack all of the parameters that must be estimated from the data
 into the vector 0, such that

 _JAq

 0 - vec( X))'

 where vec(lx) is the vector obtained by stacking all of the unique elements of
 the symmetric matrix IV Now let 0Q be the true value of 0, and 0 be a
 consistent estimator of 0Q such that T( 0 - 00) N(O, 10). We presume that
 we have available a consistent estimator of both 0Q and E. In the applica-

 tions, we compute 0 and 10 by generalized method of moments using the first
 two moments of asset returns, the first two moments of consumption growth,
 and the first-order autocovariance of consumption growth.10 The covariance

 matrix 10 is the Newey and West (1987) covariance matrix estimator with 11
 lags.ll

 Using this notation, we can make explicit the fact that the moments of the
 IMRS and the volatility bound both depend on the sample. The estimated
 mean and standard deviation of the model values of the IMRS are [? =

 ,J*P; qi) and A; = o-v4; q,), while the estimated volatility bound is

 Cx= = (4; 0) = [(Tq - IAt(; v )A) / (x Acq - At(4; v )m)] 2 (17)

 The comparison of the estimated volatility bound, o( 4; 0), and the esti-
 mated model implied standard deviation of the IMRS, o(,G; qi), can be
 carried out by examining the difference

 i\('p; 0) = o 1(4; 1) - X(4(; 0). (18)

 9 For most of our applications, btq is simply a vector of known constants, and so in practice it
 can be omitted from the specification of 0.

 10 The moment conditions used in estimation are

 E[x, - = 0

 E[vec(x x') - (vec(lx) + vec(p x t' ))] = 0
 E[mt - = 0

 E[mt -( 2 +/LC)]=0

 E[mtmt1 - (1 _ 2 C+ =

 11 The results do not appear to be sensitive to the number of lags used to compute the robust
 covariance matrix. For example, there is little change when only three lags are used.
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 In order to evaluate whether this difference is large, we require an estimate

 of the variance of AX(O; 0). This is constructed from the distribution of 0.
 To proceed, take a mean-value expansion of i\ about 0. It follows that

 /(zX(4; A) - AX(O; os)) DN(O, o2),
 where

 2 (80)0 0(0)0

 This is consistently estimated by

 6 do( ) A() do (19)
 A test of whether a particular model meets the volatility restriction can

 now be constructed by testing the null hypothesis, Ho: AX(4; QO) < 0. In
 particular, we compute the ratio AX(4; 0)/&A and look for values of 4 that
 make it small. Since this ratio is asymptotically normal, we can use these
 tests as tools for constructing the regions of the preference parameter space
 that are not rejected by the volatility bound at various levels of statistical
 significance. Given that Ho is an inequality, these tests are one-sided, and so
 appropriate critical values are - 1.65 for tests at the five percent level, and

 - 2.33 for tests at the one percent level. Implementation of these tests is the
 task of Section II.12

 II. Applications

 In this section we test the volatility bound restrictions using four well-
 known data sets on asset returns. We examine both annual and monthly data
 on equity returns and short-term Treasury debt in the United States, monthly
 returns on a portfolio constructed from the U.S. Treasury bills term structure,
 and monthly U.S. dollar returns on five major foreign currencies. For each
 data set, we study the three forms of preferences described in Section I.B: (1)
 CRRA, (2) one-lag durability, and (3) one-lag habit persistence. In all cases,
 we report results for representative values of the preference parameters.13

 A. Annual U.S. Equity and Short-term Bond Returns: 1890 to 1987

 The first returns data set we examine is the one used in Cecchetti, Lam,
 and Mark (1993) to study the equity premium puzzle. The exact sources of

 12 The procedure we advocate is a Wald test. Obviously, there are other possibilities. For
 example, since we estimate 0 by generalized method of moments, we could add (18) to the list of
 moments in the estimation, and then test the overidentifying restrictions of the model using the
 implied J-statistic, as originally described by Hansen (1982). This procedure is similar to the one
 suggested in Hansen, Heaton, and Luttmer (1993).

 13 The results were computed using FORTRAN programs, and checked with programs written
 in GAUSS. As a further check on the integrity of our results, both numerical and analytical
 derivatives were used in most of our computations.
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 Table II

 Tests Using Annual U.S. Equity and Short-term Bond Returns
 Tests of the volatility bound restrictions using annual data for consumption, returns on the

 Standard & Poor's index, and one-year Treasury bills (or the equivalent), 1890-1987. For chosen

 values of the subjective discount factor (p), curvature parameter (-y), and lagged consumption

 parameter (8), we estimate the mean (i,u) and standard deviation (6r) of the IMRS, and the

 lower volatility bound (69. The test statistic (t-ratio) is constructed under the null hypothesis

 (o- = od.

 p = 0.99 p = 1.02

 &1Y c c t-Ratio Al &ri &r. t-Ratio

 Panel A. Time-separable Utility: 8 = 0

 0 0.990 0.000 0.320 -3.633 1.020 0.000 0.711 -3.073

 1 0.973 0.033 0.411 -2.201 1.003 0.034 0.437 - 2.563

 2 0.958 0.066 0.644 -2.442 0.987 0.068 0.314 -2.537

 4 0.931 0.131 1.123 - 2.615 0.959 0.135 0.620 - 1.420

 10 0.881 0.339 2.063 - 1.881 0.908 0.349 1.557 - 1.343

 15 0.874 0.556 2.201 - 1.103 0.900 0.573 1.697 -0.753

 20 0.900 0.850 1.698 -0.375 0.928 0.876 1.185 -0.137

 25 0.967 1.269 0.502 0.276 0.996 1.308 0.358 0.803

 30 1.084 1.883 1.889 -0.002 1.116 1.940 2.516 -0.139

 Panel B. Time-nonseparable Utility: 8 = 0.5 (Durability)

 0 0.990 0.000 0.320 -3.633 1.020 0.000 0.711 -3.073

 1 0.973 0.027 0.413 - 2.260 1.002 0.028 0.435 - 2.607

 2 0.957 0.052 0.657 -2.595 0.986 0.054 0.315 -2.562

 4 0.928 0.102 1.182 -2.951 0.956 0.105 0.674 - 1.717

 10 0.861 0.238 2.457 -2.684 0.887 0.246 1.957 -2.136

 15 0.825 0.351 3.146 -2.264 0.850 0.362 2.662 - 1.881

 20 0.805 0.474 3.526 - 1.805 0.830 0.490 3.050 - 1.509

 25 0.800 0.620 3.610 - 1.335 0.825 0.641 3.132 - 1.098

 30 0.812 0.808 3.391 -0.876 0.837 0.836 2.901 -0.687

 Panel C. Time-nonseparable Utility: 8 = - 0.5 (Habit Persistence)

 0 0.990 0.000 0.320 -3.633 1.020 0.000 0.711 - 3.073

 1 0.979 0.115 0.347 - 1.440 1.009 0.121 0.534 - 2.067

 2 0.982 0.231 0.330 -0.514 1.013 0.244 0.587 - 1.225

 3 0.997 0.357 0.372 - 0.068 1.030 0.377 0.894 - 1.032

 4 1.028 0.504 0.848 -0.472 1.064 0.535 1.524 - 1.167

 5 1.077 0.692 1.767 -0.864 1.119 0.744 2.575 - 1.329

 6 1.154 0.983 3.244 - 1.095 1.209 1.105 4.295 - 1.397

 the data are described in the Appendix to that paper. Briefly, the data set
 combines the annual consumption data described in Section J.C with annual
 returns on two assets: the Standard and Poor's index supplied by Campbell
 and Shiller (1987) and one-year U.S. Treasury note yields, or their equivalent.
 Real returns are computed by deflating nominal values using the Consumer
 Price Index.

 The results of the testing procedure are in Table II. For the purposes of
 these examples, we have set the discount factor equal to 0.99 and 1.02.
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 Following the theoretical arguments in Kocherlakota (1990a), who shows that
 a unique solution to the asset pricing problem exists in economies where the
 discount factor is greater than one, and the empirical evidence in our earlier
 paper (Cecchetti, Lam, and Mark (1993)) we include values of p that exceed
 one.14 The top panel of the table reports the results for the case of time-
 separable utility (8 = 0), the middle panel includes results for the durability
 model (8 = + 0.5), and the bottom panel presents results for the habit persis-
 tence model (8 = - 0.5). Each row contains estimates for a particular value of
 the curvature parameter y. For each discount factor, we report the model
 implied values of the mean and standard deviation of the IMRS, ,tu,G; q)

 and (4; q,), the volatility bound evaluated at /t,u(; q,), jox; 0), and the
 t-ratio associated with the comparison of model with the bound, A\(X; 0)/ A.

 The main results are as follows.15 For the case of time-separable utility and
 p = 0.99, the difference between the model and volatility bound is less than
 1.65 standard deviations when y is 10 or higher. With a discount factor of
 1.02, values of y below 4 are consistent with the bound. We contrast this with
 results that are based solely on the point estimates. Using these data,

 obtaining point estimates of ( , a, o) that lie within the volatility bound
 requires values of y above 20.16

 The middle panel of Table II displays results for the one-lag durability
 model in which 8 = + 0.5. Again, we report calculations based on y from 0 to
 30, which p = (0.99, 1.02). As is well known, for given values of p and y, this

 14 There are a number of ways to understand values of p that are greater than one. For
 example, it can be thought of as a simple, but crude, way of approximating habit formation

 behavior of the type described in Constantinides (1990). In his model, marginal utility is an
 increasing function of the level of past consumption. This implies behavior similar to that

 implied by a discount factor greater than one.

 15 The results reported below are all robust to changes in the specification of the consumption
 process. Using the annual data, we have examined two additional cases: (1) consumption growth

 follows a simple AR(1) identical to the one used for monthly data, and (2) consumption growth is
 governed by the Markov switching model described and estimated in Cecchetti, Lam, and Mark

 (1990). Using an AR(1), we obtain nearly identical results to the ones reported in Table II. For

 the Markov switching model, there is no material change in the results either. However, we do

 find that there is a smaller difference between the time-separable and the one-lag durability

 cases than is suggested by the results obtained using a random walk. For example, if p = 0.99

 and utility is time separable, the lowest y not rejected by a t-test at the five percent level is 12

 for the random walk case, 14 for the case when consumption growth is an AR(1), and 13 for the
 Markov switching model. If 8 = 0.5, and so preferences exhibit durability, the equivalent values

 of y are 22, 23, and 17, respectively.

 16 The relevant parameters are estimated nonparametrically using sample moments of the

 data in all of our applications of the time-separable model. To investigate the impact of the

 normality assumption for consumption growth, we also constructed the test statistics by evaluat-

 ing (12) and (13) setting 8 = 0. For the annual data studied in this section, the asymptotic
 t-ratios are generally larger in absolute value under the normality assumption, thus providing
 more evidence against the null. The difference between the two methods is small for smaller

 values of -y. For values of y = 20 and above, the t-ratios under normality are as much as 50
 percent larger, in absolute value, than those computed nonparametrically. For the monthly data
 that we examine in Section II.B below, there is virtually no difference between the t-ratios
 computed under the nonparametric and parametric log-normal assumptions.
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 model of preferences produces uniformly less variability in the IMRS than
 the time-separable model. But even so, the one-lag durability model cannot be
 rejected at the five percent level for y > 20 when p = 0.99, and for y ? 4
 when p = 1.02.

 Results from the third case we consider, one-lag habit persistence with

 8 = -0.5, are reported in the bottom panel of Table II. Here we allow for y
 ranging from 0 to 6. As one would expect, habit persistence yields substan-

 tially more variation in the IMRS for any given value of y. Consequently, no y
 from 1 to 6 is rejected using the 1.65 standard error rule when p = 0.99. In

 addition, with p = 1.02, y's from two to six are not rejected at the five
 percent level.

 Our results are driven by the fact that the point estimate of the mean of

 the IMRS for a particular model of preferences, Auv(?b; 'p), is very imprecise

 for larger values of Y.17 To show this, Table III reports a decomposition of the
 uncertainty in the comparison of o-, with or, for the time-separable case. We
 think of this uncertainty as arising from three basic sources. Given the

 expected value of the IMRS, At, there is uncertainty in both the location of
 the bound, o-, and the standard deviation implied by the model, oa> In
 addition, there is uncertainty induced by the fact that the mean IMRS for the

 model, Au must be estimated.
 For each value of y, Table III reports a decomposition of the uncertainty in

 the estimate of A = (ov - o) into its components. The standard error of the
 estimate of the Hansen-Jagannathan bound for fixed ,ait 6r, is in column
 (2).18 Columns (3) and (4) report standard errors for ov and A, again for fixed
 ILv. The next three columns of the table, labelled (5), (6), and (7), report the
 uncertainty in &x 6> and A, that arises solely from randomness in utv. The
 final column of the table is our estimate of the "total" standard error in A, 5'A
 computed using the technique described in Section I.E.19

 The results in the table show that for larger values of y, the main source of

 uncertainty is the fact that ,uv must be estimated. For example, when y
 equals 15, then the estimate of (qA including all sources of uncertainty is 1.49,
 of which approximately two-thirds can be attributed to the uncertainty

 arising from the estimation of the mean of the IMRS. The source of the

 uncertainty in the estimate of 1Av can be linked to the consumption data,
 since imprecision in estimating the moments of consumption growth lead
 directly to variance in the estimate of the mean IMRS from the model.
 Consequently, we conclude that the large standard errors associated with the
 comparison of the volatility bound to the IMRS moments implied by the

 17 We thank Robert Stambaugh for pointing this out.
 18 Hansen and Jagannathan (1988), an earlier version of the 1991 paper, studies this source of

 uncertainty.

 19 We note that all of these quantities can be computed by setting various elements in equation
 (19) to zero. The presence of nonzero covariances implies that entries in the table need not add
 up to other elements in the same row.
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 Table III

 Comparison of Sources of Uncertainty
 Standard errors (s.e.) for estimated lower volatility bound ( I9, IMRS standard deviation (69,
 and the difference (A = - ax), under alternative assumptions regarding the sources of uncer-
 tainty. The utility function is time separable; y is the coefficient of relative risk aversion and
 p = 0.99 is the subjective discount factor. Annual data for consumption, returns on the Standard
 & Poor's index, and one-year Treasury bills (or the equivalent), 1890-1987.

 /IV: Fixed Fixed Fixed Random Random Random Random
 Returns: Random Random Fixed Fixed Random

 s.e.( ^) s.e.(C) s.e.(i\) s.e.(^x s.e.(aU s.e.(la) s.e.(A^)
 (1) (2) (3) (4) (5) (6) (7) (8)
 0 0.088 0.000 0.088 0.000 0.000 0.000 0.088
 1 0.151 0.089 0.204 0.037 0.087 0.050 0.172

 4 0.184 0.101 0.260 0.226 0.087 0.139 0.380
 8 0.257 0.129 0.352 0.505 0.089 0.416 0.724
 10 0.286 0.147 0.392 0.670 0.091 0.579 0.917
 15 0.305 0.209 0.456 1.190 0.098 1.092 1.492
 20 0.240 0.303 0.489 1.911 0.107 1.805 2.265
 25 0.160 0.444 0.565 2.346 0.119 2.227 2.774
 30 0.432 0.663 0.738 4.472 0.135 4.608 4.010

 models of preferences can be traced to the relatively high uncertainty con-
 tained in the consumption data.

 B. Monthly U.S. Equity and Short-term Bond Returns: 1964 to 1988

 We now examine a monthly U.S. data set that combines the consumption
 data described in Section J.C with the return to the Center for Research in
 Security Prices (CRSP) valued-weighted index of New York Stock Exchange
 stocks and the one-month holding period return to three-month Treasury
 bills.20 The two return series are from the "Fama file" available from CRSP.
 Real returns are constructed using the implicit price deflator for consumption
 of nondurables and services. The complete data set extends from April 1964
 to December 1988.

 The volatility restrictions implied by these monthly bond and equity re-
 turns are reasonably difficult to reject under the assumption that investors
 are risk neutral. However, Hansen and Jagannathan find that a greater
 challenge to asset pricing models can be posed when conditioning information
 is incorporated by augmenting the set of asset payoffs, since doing so sub-

 20 It is common to use the one-month Treasury bill for this exercise. But, as discussed in
 Section II.C below, we feel that the one-month data have problems that do not arise at longer
 maturities.
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 stantially raises the volatility bound. Accordingly, in order to test the volatil-
 ity bound, we multiply each of the original asset prices by the lagged gross
 return of the assets and the lagged consumption growth rate, thereby ex-
 panding the number of assets from 2 to 8. Writing the problem in returns

 form, denoting the gross return on debt as r1,t the gross return on equity as

 r2,t and gt as the gross consumption growth rate we have

 q = {1, 1, rl,t-l r2,t-1, rl,t-l r2, t gt-i}

 and

 Xt = {rl,t r2,t r1t rlt_, r1 r2,t-1 r2,trlt_,1 r2,tr2,t-1 rl,tgt- , r2tgt- 1}-

 Any attempt to meet the restrictions of the volatility bound using monthly
 data is hampered by the relative smoothness of consumption growth at this
 frequency. As Hansen and Jagannathan (1991) show, this lack of variation in
 consumption growth prevents the point estimates of the mean and standard
 deviation of the IMRS implied by the time-separable (8 = 0) and the one-lag
 durability (8 = + 0.5) models from satisfying the bound unless y is extremely
 large. But once sampling variability is taken into account, this is no longer
 the case. In fact, we are able to find instances in which y is less than thirty
 that are not rejected by our test.

 Table IV presents the results for the three preference specifications using
 monthly data on stock and bond returns. Again, the top panel reports
 findings for the 8= 0 case, while the middle and bottom panels do so for
 8 = + 0.5 and 8 = - 0.5, respectively. Under habit persistence with p = 1.02
 at an annual rate, there are many values of y between 2 and 9 that are not
 rejected at the five percent level-i.e., the t-ratio is below 1.65 in absolute
 value. In addition, for the time-separable case, y = 2 is only marginally
 rejected with a t-ratio of - 1.75. For p = 0.99, the story is slightly different,
 with all values of y being rejected in the time-separable and durability cases,
 but y between 4 and 10 not being rejected when there is habit persistence.

 These results contrast somewhat with those that are obtained when sam-
 pling variability is ignored. For example, Hansen and Jagannathan (1991)
 conclude that y must exceed 100 in the CRRA case, and suggest that the
 monthly data provide a more stringent set of restrictions than the annual
 data.

 C. Monthly U.S. Treasury Bills Term Structure: 1964 to 1988

 In choosing the next data set for study, we follow Hansen and Jagannathan
 and examine the term structu're of U.S. Treasury bills data. Specifically we
 consider a portfolio of three-, six-, and nine-month bills, and use monthly
 observations on three-month holding period returns constructed from the
 average of the bid and ask prices. Real returns are computed using the
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 Table IV

 Tests Using Monthly U.S. Equity and Short-term Bond Returns
 Tests of the volatility bound restrictions using monthly data for consumption, returns on eight

 asset returns constructed from the value-weighted NYSE index, and three-month Treasury bills,

 April 1964 to December 1988. For chosen values of the subjective discount factor ( p), curvature

 parameter (-y), and lagged consumption parameter (8), we estimate the mean ( j,) and standard
 deviation (5,) of the IMRS, and the lower volatility bound (5). The test statistic (t-ratio) is
 constructed under the null hypothesis (o-, = ax).

 p= 0.99 p= 1.02

 )/ yu au crx ~~~~t-Ratio yu cu cx t-Ra-tio

 Panel A. Time-separable Utility: 8 = 0

 0 0.999 0.000 0.158 -2.947 1.002 0.000 1.016 - 7.216

 1 0.998 0.004 0.662 - 4.148 1.000 0.004 0.380 - 2.985

 2 0.996 0.009 1.300 - 5.381 0.998 0.009 0.342 - 1.748

 4 0.993 0.017 2.565 - 5.869 0.995 0.017 1.584 -3.995

 10 0.984 0.043 6.167 - 5.860 0.986 0.043 5.193 -5.136

 15 0.977 0.064 8.941 -5.731 0.979 0.064 7.973 - 5.247

 20 0.970 0.085 11.510 - 5.590 0.973 0.085 10.549 - 5.222

 25 0.964 0.106 13.878 - 5.442 0.967 0.106 12.923 - 5.144

 30 0.959 0.127 16.049 -5.290 0.961 0.127 15.099 -5.038

 Panel B. Time-nonseparable Utility: 8 = 0.5 (Durability)

 0 0.999 0.000 0.158 - 2.900 1.002 0.000 1.016 - 7.068

 1 0.998 0.003 0.664 -4.167 1.000 0.003 0.378 -2.984

 2 0.996 0.006 1.308 - 5.419 0.998 0.006 0.349 - 1.790

 4 0.993 0.012 2.596 - 5.937 0.995 0.012 1.615 - 4.075

 10 0.983 0.030 6.357 - 6.017 0.986 0.030 5.383 - 5.305

 15 0.976 0.045 9.364 - 5.965 0.978 0.045 8.397 - 5.493

 20 0.968 0.060 12.258 - 5.904 0.971 0.060 11.298 - 5.548

 25 0.961 0.074 15.040 - 5.840 0.964 0.074 14.088 - 5.554

 30 0.955 0.088 17.713 - 5.775 0.957 0.088 16.767 - 5.534

 Panel C. Time-nonseparable Utility: 8 = - 0.5 (Habit Persistence)

 0 0.999 0.000 0.158 -2.900 1.002 0.000 1.016 -7.068

 1 0.998 0.021 0.581 - 3.556 1.000 0.021 0.457 - 3.349

 2 0.997 0.042 0.972 -3.931 0.999 0.042 0.160 -2.166

 3 0.996 0.062 1.197 -3.432 0.999 0.063 0.251 -0.765

 4 0.996 0.083 1.253 - 2.684 0.999 0.084 0.295 - 0.597

 5 0.996 0.104 1.140 - 1.871 0.999 0.105 0.205 -0.281

 6 0.997 0.125 0.859 - 1.073 1.000 0.126 0.223 -0.217

 7 0.998 0.146 0.419 -0.343 1.001 0.147 0.641 -0.634

 8 1.000 0.168 0.288 -0.145 1.002 0.168 1.269 - 1.127

 9 1.002 0.189 1.059 -0.733 1.004 0.190 2.080 - 1.596

 10 1.004 0.211 2.037 - 1.285 1.007 0.212 3.073 -2.022

 15 1.024 0.329 9.787 -3.119 1.027 0.330 10.902 -3.468

 20 1.057 0.470 23.022 - 3.890 1.060 0.473 24.271 - 4.067

 25 1.109 0.680 43.686 -3.829 1.113 0.683 45.187 -3.927

This content downloaded from 129.74.250.206 on Tue, 16 Jan 2018 19:29:26 UTC
All use subject to http://about.jstor.org/terms



 Testing Volatility Restrictions 141

 deflator of the nondurable plus service component of consumption. Again, the
 data are from the "Fama file" supplied by CRSP.21

 Since we are using monthly observations on three-month holding period
 returns to compute the bounds, we must compute the model implied values of
 the mean and standard deviation of the IMRS that mimic this timing. In the
 notation of Section I, this means that we must calculate IMRS tt+3' which is
 just equation (14) with k = 3. The model implied values of the moments of
 the IMRS follow immediately from equations (15) and (16) of Section I.D,
 again setting k = 3.22

 Table V reports the results of using monthly consumption data, together
 with the three-, six-, and nine-month data on Treasury bills, to test the
 models of interest. Once again, the three panels of the table refer to the
 time-separable (8 = 0), one-lag durability ( = + 0.5), and one-lag habit per-
 sistence (8 =-0.5) cases, with p equal to 0.99 and 1.02.23 Regardless of the
 discount factor, all of the time-separable and one-lag durability models
 reported are rejected at the five percent level, since there are no t-ratios with
 an absolute value less than 1.65. These results are broadly consistent with
 those implied by Hansen and Jagannathan's (1991) Figure 6-the Treasury
 bills data present significant obstacles for asset pricing models.

 When we allow preferences to exhibit habit persistence, then the results
 are somewhat different. Specifically, we find that for y in excess of 20, the
 model is not rejected. This is true for both p = 0.99 and p = 1.02.

 21 In contrast to Hansen and Jagannathan, we choose not to include the twelve-month
 Treasury bill, since the currently available CRSP data contain a large number of missing
 observations-i.e., months in which there was no twelve-month bill outstanding. It has been
 pointed out to us that the CRSP data set used by Hansen and Jagannathan contained many
 fewer missing data points in the twelve-month file than the current CRSP releases, because of
 changes in their sampling procedure. Also, following common practice, we exclude the one-month
 Treasury bill. Recent work by Luttmer (1991), and Cochrane and Hansen (1992) examines data
 on one-, three-, six-, and nine-month bills, and finds that the addition of the one-month bill
 substantially raises the bound. But the one-month bill market is extremely thin, with most
 trading occurring outside the standard dealer-broker system and transactions costs being
 substantial-see, for example Stigum (1990, pp. 667ff). As a result, quoted bid-ask spreads are
 very large, and there is the potential for reported prices to be inaccurate. The methods of both
 Luttmer and He and Modest, which treat market frictions explicitly and so do not impose the law
 of one price, are less sensitive to the problems posed by the one-month data.

 22 Our decision to follow common practice in using three-month holding, period returns is
 dittated by our belief that the available data on intermediate term Treasury bills-two, four,
 five, seven, and eight months to maturity-is of poor quality. We note that if we were to use
 one-month holding period returns computed from the purchase of a three-, six-, and nine-month
 bill followed by the sale of a two-, five-, and eight-month bill the following month, then our
 results are dramatically different. The reason for this is that the one-month holding period
 returns on each of the three bills have virtually the same mean in the data set, but different
 variances-it is as if the prices are constructed by simple linear interpolation along the term
 structure. These data give the false impression that agents are nearly risk neutral. We take this
 as confirmation of the belief that the only reliable data are those on Treasury bills that are
 heavily traded.

 23 For the time-separable case, we estimate the moments of the IMRS using the sample
 moments of p3(Ct+ 3/Ct )Y
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 Table V

 Tests Using Monthly Treasury Bill Term Structure
 Tests of the volatility bound restrictions using monthly data for consumption, three-, six-, and

 nine-month Treasury bills, April 1964 to December 1988. For chosen values of the subjective

 discount factor ( p), curvature parameter (y), and lagged-consumption parameter (8), we esti-

 mate the mean (A,u) and standard deviation (69) of the IMRS, and the lower volatility bound
 (69. The test statistic (t-ratio) is constructed under the null hypothesis (o-, = o9.

 p = 0.99 p 1.02

 dY &u ru c t-Ratio &u ru cr t-Ratio

 Panel A. Time-separable Utility: 8 = 0

 0 0.997 0.000 0.253 - 1.907 1.005 0.000 1.211 - 7.510

 1 0.993 0.006 0.513 - 2.299 1.000 0.006 0.552 - 3.280

 2 0.988 0.012 1.157 -3.302 0.995 0.012 0.223 - 1.066

 4 0.978 0.024 2.445 -3.958 0.985 0.025 1.456 -2.711

 10 0.951 0.060 6.132 -4.303 0.958 0.060 5.167 -3.831

 15 0.930 0.088 8.993 -4.336 0.937 0.088 8.048 -4.019

 20 0.910 0.115 11.669 -4.323 0.917 0.116 10.744 -4.081

 25 0.892 0.142 14.168 -4.289 0.898 0.143 13.262 -4.092

 30 0.874 0.169 16.498 -4.244 0.881 0.170 15.610 -4.075

 Panel B. Time-nonseparable Utility: 8 = 0.5 (Durability)

 0 0.997 0.000 0.253 - 1.907 1.005 0.000 1.211 - 7.510

 1 0.993 0.006 0.504 - 2.177 1.000 0.006 0.562 -3.213

 2 0.988 0.013 1.137 -3.130 0.995 0.013 0.211 - 1.016

 4 0.978 0.025 2.405 -3.752 0.986 0.025 1.415 - 2.523

 10 0.952 0.060 6.028 -4.064 0.959 0.061 5.062 - 3.595

 15 0.931 0.089 8.835 -4.083 0.938 0.089 7.890 -3.768

 20 0.912 0.116 11.457 -4.058 0.918 0.117 10.531 - 3.818

 25 0.894 0.143 13.903 -4.016 0.900 0.144 12.995 - 3.819

 30 0.877 0.168 16.181 - 3.963 0.883 0.170 15.290 - 3.795

 Panel C. Time-nonseparable Utility: 8 = - 0.5 (Habit Persistence)

 0 0.997 0.000 0.253 - 1.907 1.005 0.000 1.211 - 7.510

 1 0.993 0.018 0.486 - 1.951 1.000 0.018 0.581 - 3.014

 2 0.988 0.036 1.060 - 2.719 0.996 0.036 0.178 -0.913

 3 0.984 0.054 1.600 - 3.010 0.992 0.054 0.615 - 1.318

 4 0.981 0.071 2.098 - 3.119 0.988 0.072 1.107 - 1.826

 5 0.977 0.089 2.552 -3.148 0.985 0.090 1.561 - 2.098

 6 0.974 0.106 2.961 -3.133 0.982 0.107 1.971 - 2.242

 7 0.972 0.124 3.327 -3.091 0.979 0.125 2.338 - 2.310

 8 0.969 0.141 3.649 -3.031 0.977 0.142 2.660 -2.331

 9 0.967 0.158 3.927 -2.956 0.974 0.160 2.939 - 2.318

 10 0.965 0.176 4.162 -2.871 0.973 0.178 3.174 -2.280

 15 0.962 0.266 4.674 - 2.308 0.969 0.268 3.678 - 1.850

 20 0.966 0.364 4.021 - 1.541 0.974 0.367 3.004 - 1.139

 25 0.981 0.479 2.016 -0.546 0.989 0.484 0.963 - 0.174
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 D. Monthly Foreign Currency Returns: 1973 to 1988

 The final application we examine uses monthly U.S. dollar speculative
 returns on five major currencies, together with the monthly consumption
 data described above. We study spot and one-month forward U.S. dollar
 prices of the Canadian dollar, the deutsche mark, the French franc, the
 pound, and the yen. These data are the Friday closing quotations reported in
 the Harris Bank Foreign Exchange Weekly Review. The sample is drawn from
 those Friday quotations that fall nearest to the end of the calendar month.
 Again, we calculate real magnitudes using the implicit deflator for consump-
 tion of nondurables plus services.

 In order to construct the asset portfolios, we begin by defining sit to be the
 dollar spot price of foreign currency i, and fit to be the one-month dollar
 forward price of a unit of this currency determined at date t. In determining
 an investment strategy at date t, an investor will want to go long in the

 forward foreign currency contract if (fit - Sit+ 1) is expected to be positive,
 and short if (fit - Sit+ ,) is expected to be negative.

 Let Iit be an indicator function such that

 |1 if Et( fit-Sit+ 1) >
 'it -l1 if Eth titSit+ 1) <o

 The Euler equations implied by this investment strategy can be expressed as

 0 =Et Vt+ liit f it+ 1 )' (i = 1, 2,. .., n), (20)

 where Pt is the aggregate U.S. price level.
 In notation corresponding to that of Section I, qt = 0 and the ith element of

 the gross return vector x equals

 fit- sit + 1 Pt

 Xit 1 =lit si Pt+ 1

 Since ,uq is a zero-valued vector, the implied lower volatility bound is a ray
 from the origin given by

 ax = [ ,xE- 'yx]',,. (21)
 Backus, Gregory, and Telmer (1993) investigate the lower volatility bound

 (21) using univariate data on the five currencies we examine. They eval-
 uate the indicator function by projecting the currency speculative return,

 ((fit - Sit+ 1)/Sit), on the forward premium, ((fit - sit)/sit) and using the
 fitted values as the estimates of the conditional expectation of the return. The
 indicator Iit is then assigned a value of + 1 when this fitted value is positive,
 and -1 when the fitted value is negative.24

 24 The projection strategy is defensible on the grounds that the forward premium has proved to
 be a robust predictor of future currency returns during the modern period of floating exchange
 rates. See Hodrick (1987) for a survey of theoretical developments and empirical evidence
 concerning the behavior of foreign currency returns.
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 When preferences are given by the one-lag habit persistence model, with a
 y of 10, Backus, Gregory, and Telmer find that the point estimate of the
 volatility of the IMRS, Q , is less than one-third of the volatility implied by

 the foreign currency returns data and the Euler equations. From this, they

 conclude that these preferences are not capable of explaining the dynamics of
 foreign currency returns.

 Using the Backus, Gregory, and Telmer method for evaluating the indica-
 tor function, we examine the portfolio constructed from the five currencies.

 Again we examine all three preference specifications, 8 = (0, +0.5, -0.5),

 and two values of the discount factor, p = (0.99, 1.02). The results are
 reported in Table VI. For these data, the volatility bound is substantially

 higher than it is when we use domestic U.S. stock and bond data. At a mean

 IMRS value of one, ,uI = 1, the implied lower volatility bound has risen from
 0.322 for the monthly stock returns data discussed in Section II.B, to 0.402.

 It is obvious from the top two panels of Table VI that both the model with

 time-separable utility and the one with one-lag durability imply much too

 little variation in the IMRS relative to that implied by the data. For all of the

 parameter values we consider, both of these cases are easily rejected by our
 testing procedure, as the t-ratio always exceeds 3.8 in absolute value.

 The bottom panel of Table VI reports the results for the one-lag habit

 persistence model using the data on the five foreign currency returns. Here,
 values of y of 15 and higher cannot be rejected at the five percent level.

 We cautiously conclude that the restrictions imposed by foreign currencies

 returns pose quite a challenge to asset pricing models. The source of our

 prudence is that we have no real sense of how important even small frictions

 are for these results. As both Luttmer (1991) and He and Modest (1991)
 suggest, transactions costs, short-sale constraints, and restrictions on borrow-

 ing against future labor income can have a very important impact on the

 height and shape of the volatility bound. It is very possible that once the size

 of the bid-ask spread is taken into account, then the bound will no longer be
 as significant as it appears from the results reported in Table VI.

 III. Nonnegativity of the IMRS

 In this section we generalize the framework described in Section I to

 incorporate an important implication of asset pricing theory. As Hansen and
 Jagannathan discuss, the IMRS must be nonnegative or the model implies
 that assets with a zero probability of a negative payoff will command nega-
 tive prices. Therefore, it is of interest to reformulate the test of Section I
 taking into account this information. In the remainder of this section, we
 begin by discussing the methods we use for computing test statistics. Then in
 Section III.B we report results for the annual data studied in Section II.A,
 and Section III.C follows with results for the Treasury bills term structure
 data studied in Section II.C.
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 Table VI

 Tests Using Monthly Foreign Currency Returns
 Tests of the volatility bound restrictions using monthly data for consumption, and speculative

 returns on forward foreign exchange on the Canadian dollar, deutsche mark, French franc,

 pound, and yen, March 1973 to December 1988. For chosen values of the subjective discount

 factor (p), curvature parameter (-y), and lagged-consumption parameter (8), we estimate the
 mean (,4) and standard deviation (&5w) of the IMRS, and the lower volatility bound (5ax). The test

 statistic (t-ratio) is constructed under the null hypothesis ('xv = o,,).

 p = 0.99 p = 1.02

 yV crV aX ~~~t-Ratio av U x t-Ratio

 Panel A. Time-separable Utility: 8 = 0

 0 0.999 0.000 0.402 - 5.749 1.002 0.000 0.403 - 5.749

 1 0.998 0.004 0.401 - 5.685 1.000 0.004 0.402 - 5.685
 2 0.996 0.009 0.401 - 5.621 0.999 0.009 0.402 - 5.621
 4 0.994 0.017 0.400 - 5.491 0.996 0.017 0.401 - 5.492

 10 0.986 0.043 0.397 -5.106 0.989 0.043 0.398 -5.105

 15 0.981 0.064 0.394 -4.785 0.983 0.064 0.395 -4.785

 20 0.976 0.085 0.392 - 4.464 0.978 0.085 0.393 - 4.464

 25 0.971 0.106 0.391 -4.143 0.974 0.106 0.391 -4.143
 30 0.967 0.126 0.389 -3.823 0.969 0.127 0.390 -3.823

 Panel B. Time-nonseparable Utility: 8 = 0.5 (Durability)

 0 0.999 0.000 0.402 - 5.749 1.002 0.000 0.403 - 5.749

 1 0.998 0.003 0.401 -5.705 1.000 0.003 0.402 -5.705

 2 0.996 0.006 0.401 -5.661 0.999 0.006 0.402 -5.661

 4 0.994 0.012 0.400 - 5.572 0.996 0.012 0.401 - 5.572

 10 0.986 0.030 0.396 - 5.306 0.988 0.030 0.397 - 5.306
 15 0.980 0.044 0.394 - 5.084 0.982 0.044 0.395 - 5.084
 20 0.974 0.059 0.392 - 4.863 0.976 0.059 0.393 - 4.863

 25 0.968 0.073 0.389 -4.642 0.971 0.073 0.390 -4.642

 30 0.963 0.087 0.387 -4.421 0.965 0.087 0.388 -4.421

 Panel C. Time-nonseparable Utility: 8 = - 0.5 (Habit Persistence)

 0 0.999 0.000 0.402 - 5.749 1.002 0.000 0.403 - 5.749

 1 0.998 0.021 0.401 -5.430 1.001 0.021 0.402 -5.429
 2 0.997 0.042 0.401 -5.109 1.000 0.042 0.402 -5.107

 3 0.997 0.063 0.401 - 4.787 1.000 0.064 0.402 - 4.785

 4 0.997 0.084 0.401 - 4.465 1.000 0.085 0.402 - 4.461
 5 0.998 0.106 0.401 -4.142 1.000 0.106 0.402 -4.138

 6 0.999 0.127 0.402 -3.819 1.001 0.128 0.403 -3.814

 7 1.000 0.148 0.402 -3.496 1.003 0.149 0.403 -3.490

 8 1.002 0.170 0.403 -3.173 1.005 0.171 0.404 -3.166

 9 1.005 0.192 0.404 -2.850 1.007 0.193 0.405 -2.843
 10 1.008 0.215 0.405 - 2.528 1.010 0.216 0.406 -2.519

 15 1.030 0.336 0.414 -0.934 1.033 0.338 0.415 -0.922
 20 1.067 0.485 0.429 0.544 1.070 0.488 0.430 0.558
 25 1.125 0.709 0.452 1.548 1.129 0.714 0.454 1.518
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 A. Methodology

 We begin by describing Hansen and Jagannathan's (1988) method for
 computing point estimates of the volatility bound that impose the nonnega-
 tivity restriction. Expressing the problem in returns form, which means that
 asset prices are all one, the bound they derive is

 = [A' - ,2] 1/2 (22)
 where l,v is the mean of the IMRS, A is defined by

 A = minE{max[O, w + a 'x]}2 (23)
 w,a

 s.t. wp,v + a'l = 1,

 x is an n-dimensional vector of returns, 1 is an n-dimensional vector of ones,
 w is a scalar parameter, and a is an n-dimensional vector of parameters. In
 the absence of the "max" expression, (23) collapses to the simple case of
 Section I.A.

 Hansen and Jagannathan propose estimating ax using the sample analog
 of A,

 A T (24
 A = min - E max[O, w + a'x] (24)

 w, aT t = 1

 s.t. wp,v + a'l = 1.

 Then an estimate of the volatility bound is

 A= [ A- 2 ]1/2 (25)

 Following the method in Section J.E, we can construct the standard error
 for the difference between the volatility bound and the model implied value of

 the standard deviation of the IMRS: A = v- ox As is apparent from (24), A
 depends on the sequence {xt}, rather than the sample moments of returns, jiX
 and vec( x). This means that we cannot express A directly as a function of
 the estimated moments of consumption and returns, as is done in (18).
 Nevertheless, we can use the same procedure if we redefine the vector of
 parameters 0 as

 [ A], (26)

 where A is defined by (23) and qi is the parameter vector associated with the
 consumption growth process, (tL, o-, Ct)

 With this redefinition, we can compute the analog of (19),

 A 2^ A() (27)
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 Evaluation of (27) requires an estimate of Y,, which depends on the covari-
 ance of A and qf, rather than the covariance of the samples moments of
 returns and ~. We can compute an estimate, ,9 by stacking the equation
 that defines A, (24), together with the moment conditions used to estimate q/
 and applying the results of Hansen, Heaton, and Luttmer (1993). The details
 are described in the Appendix.25

 B. Annual U.S. Equity and Short-term Bond Returns: 1890 to 1987

 The results of including the nonnegativity restriction are presented in
 Table VII. Here we report estimates of the mean and standard deviation of

 the IMRS, the volatility bound, and the t-ratio for A, using the annual data of
 Section I. A, time-separable utility and a discount factor of 0.99. For compari-
 son, the table reports values of the bound and the t-ratio both with and
 without the nonnegativity restriction.

 As Hansen and Jagannathan observe, the incorporation of the nonnegativ-
 ity restriction does sharpen the point estimates of the bound. The effect of the

 restriction is particularly pronounced when tL, is small. For example, when
 ,UV is 0.881, ax is 2.063 when nonnegativity is ignored. But with nonnegativ-
 ity, ax rises to 4.749.

 This sharpening of the bound necessarily increases the estimate of lA, the

 distance between the estimates of ov and ax. But, as the table shows, the
 estimated standard error of A with nonnegativity increases by so much that,
 for all but the lowest values of y we study, the t-ratios are now closer to zero
 than they were without the restriction. Thus, when taking into account
 sampling variability, we obtain the surprising result that imposing the
 nonnegativity constraint raises the volatility bound while at the same time
 yielding less evidence against the null hypothesis.

 We conjecture that one reason for this result is that the added uncertainty
 driving our results comes from the truncation in the computation of A. This

 can be seen from the "max" in (23). As L,v decreases from the point at which
 oa is minimized (the bottom of the parabola) the truncation caused by the
 "max" function implies that more and more information is thrown out in the
 calculation of A. As less data are used to compute the bound, the precision of
 the bound deteriorates.

 C. Monthly U.S. Treasury Bills Term Structure: 1964 to 1988

 We have also examined the importance of the nonnegativity constraint
 using the same Treasury bills data set studied in Section II.C. The results are
 presented in Panel B of Table VII. Again, we report estimates both with and

 25 In our working paper (Cecchetti, Lam, and Mark (1992)) we present an alternative, and less
 complex, method for incorporating the nonnegativity restriction. There we assume that returns

 are jointly normally distributed, and show how to construct a parametric estimate of the test

 statistic which imposes the nonnegativity of the IMRS. The results from the parametric method

 are both qualitatively and quantitatively similar to those obtained using the nonparametric

 method described in the text.
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 Table VII

 Tests Incorporating the Nonnegativity of the IMRS
 Tests of the volatility bound restrictions that incorporate nonnegativity of the IMRS, using

 annual data for consumption, and either returns on the Standard & Poor's index, and one-year

 Treasury bills (or the equivalent), 1890 to 1987; or three-, six-, and nine-month Treasury bills,

 April 1964 to December 1988. For a subjective discount factor ( p) of 0.99, time-separable utility,

 and various values of the curvature parameter (y), we estimate the mean (ft) and standard

 deviation (5,,) of the IMRS, and the lower volatility bound (9). The test statistic (t-ratio) is
 constructed under the null hypothesis ('xv = 'xx

 Without Nonnegativity With Nonnegativity

 &. yv(v(x t-Ratio t-Ratio

 Annual Data on Equity Returns, 1890-1987

 0 0.990 0.000 0.320 - 3.633 0.320 - 3.633

 1 0.973 0.033 0.411 - 2.201 0.411 - 2.203

 2 0.958 0.066 0.644 - 2.441 0.675 - 1.975

 4 0.931 0.131 1.123 - 2.615 1.500 - 1.753

 10 0.881 0.339 2.063 - 1.880 4.749 - 0.967

 15 0.874 0.556 2.201 - 1.103 5.613 - 0.473

 20 0.900 0.850 1.698 -0.375 3.033 - 0.279

 25 0.967 1.269 0.502 0.277 0.505 0.261

 30 1.084 1.883 1.889 - 0.002 2.107 -0.041

 Treasury Bills Term Structure: Monthly, 1964-1988

 0.0 0.997 0.000 0.513 - 5.377 0.557 -4.347

 0.5 0.995 0.003 0.607 -4.225 0.633 - 3.986

 1.0 0.993 0.006 0.833 -4.004 0.870 - 3.633

 1.5 0.990 0.009 1.120 -4.122 1.208 -3.412

 2.0 0.988 0.012 1.424 -4.248 1.637 -3.124

 2.5 0.985 0.015 1.736 -4.348 2.180 - 2.814

 3.0 0.983 0.018 2.052 -4.419 2.859 - 2.580

 3.5 0.981 0.021 2.369 -4.480 3.725 - 2.329

 4.0 0.978 0.024 2.686 -4.554 4.971 - 1.902

 4.5 0.976 0.027 3.001 - 4.558 9.596 - 0.588

 without the restriction using time-separable utility and a discount factor of
 0.99. The table presents results for y ranging from 0 to 4.5 for the following
 reason: As y increases, the estimated IMRS decreases, which increases the
 estimated volatility bound. Using these data, and in cases in which y exceeds
 5, the result is that the estimated volatility bound is infinite.

 The incorporation of the nonnegativity restriction into the calculations
 using the Treasury bills term structure sharpens the volatility bound consid-

 erably. For example, when y is 4.5, the ax is three times higher with
 nonnegativity than it is without. Even so, we again observe that the inclusion
 of the restriction increases the standard error of A enough so that we actually
 have less evidence against the null hypothesis. Note that when nonnegativity
 is considered, y = 4.5 cannot be rejected at the five percent level, while
 without the restriction it could be rejected at the one percent level.
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 ]V. Conclusion

 This paper has developed and implemented a procedure for testing the
 restrictions implied by Hansen and Jagannathan's (1991) lower volatility
 bound for the intertemporal marginal rate of substitution. Our approach
 allows us to evaluate whether the standard deviation of the IMRS implied by
 a particular model of preferences is consistent with the bound derived from
 asset returns data. The result is a statistical test that can be used to formally
 reject some models.

 Previous investigators have concluded that the restrictions implied by the
 bound allow rejection of many commonly used utility functions for reasonable
 parameter values. But their methods involve comparison of the point esti-
 mates of the bound with the IMRS volatility derived using different utility
 functions. In contrast to these results, we find that by taking explicit account
 of sampling variability, the restrictions implied by the bound do not allow
 rejection of a number of models with reasonable parameter values. In particu-
 lar, using annual data on equity and bond returns in the United States over
 the last century, we find that the constant relative risk aversion utility is
 consistent with the bound when the discount factor is 0.99 and the CRRA
 coefficient is 6 or higher. From this we conclude that the failure of some
 models is not nearly as extreme as the point estimates would suggest.

 We go on to examine three additional data sets, and discover that we can
 find a set of preferences that are not rejected by the restrictions implied by
 the volatility bounds. This is true of: (1) monthly data on stock prices and
 Treasury debt, where we find that time-separable utility with a discount
 factor of 1.02 and a CRRA coefficient near two is marginally consistent with
 the data; (2) monthly Treasury bills term structure data, where we find that
 one-lag habit persistence utility with a discount factor of 1.02 and a CRRA
 coefficient of twenty is consistent with the data; and (3) data on returns to
 five foreign currencies, where we find that preferences exhibiting habit
 persistence with a discount factor of 0.99 and curvature parameter of fifteen
 is consistent with the data.

 We also examine the importance of explicitly considering the fact that the
 IMRS must be nonnegative. While the incorporation of the information in this
 restriction does sharpen the volatility bound, as Hansen and Jagannathan

 originally found, our results suggest that the uncertainty associated with the
 location of the bound grows so rapidly as to make it less conclusive than tests
 that ignore the restriction.

 Appendix

 This appendix uses the results of Hansen, Heaton, and Luttmer (1993) to
 construct the covariance matrix for OA, which is required to estimate the
 difference between the standard deviation of the IMRS and the Hansen-
 Jagannathan volatility bound imposing the nonnegativity restriction, as dis-
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 cussed in Section III.A. For simplicity, we discuss the case of time-separable
 utility.

 Assume that consumption growth is stationary and ergodic. It follows from

 Hansen (1982) that we can consistently estimate the first two moments of the
 IMRS by their sample analogs

 A t+) (Al)

 A >2T Ct+l) (A2)

 where, for convenience, we let IT Xt 1/TET1 Xt.
 Next, consider the definition of A from the problem in Section III.A,

 equation (23).. Let the vector of returns on the n assets be given by x, then
 substitute the constraint into the minimization problem. Following closely
 the notation of Hansen, Heaton, and Luttmer, we write the result as

 A = E{4[ a *( p1), p]}I (A3)

 where 4 = {max[O,(1 - a*( tLl)'0/p1t + a*( iul)'x]}2, 1 is a vector of ones, and
 a*( pL) = [aar( p) 4( 4) ** ( p1)]', the vector of minimizers of the prob-
 lem in equation (23) for a given pi1. The sample analog for A is then

 A = >2T{4[a*(IA1), A1], (A4)

 where a*( ,1) is the vector of minimizers of the problem in equation (24), for a
 .~~~~ A given IL1A

 Assuming that A is continuously differentiable in /11, we expand (A - A)
 into three terms:

 T(A- A) = T(T([a ( L]), 1]- [a a(ILl), 11]})
 +FT IT [ a*( L), t1 - E(4[ a*(1), Li])})

 ? A'(g ,) A( - L) (A5)

 where A' is the derivative of A with respect to tLl, evaluated at a value
 between tLl and A1, jil. We note that it is the final term in (A5) that
 differentiates our problem from that of Hansen, Heaton, and Luttmer, as we
 consider explicitly the sampling variability associated with the estimation of

 -Li*
 Two facts established by Hansen, Heaton, and Luttmer are useful for

 analyzing (A5). First, the probability limit of the first term is zero. Second, A
 is a consistent estimator for A for any given pL1. Since both A and Ai are

 consistent, it follows that A'( Al) converges in probability to A'(tIl). Using
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 these results, we can then rewrite equation (A5) as

 ( - A) F (IZT(j[ a*(1), l - E(+[ a*(b), -L])})

 + A'(( ,L) (Al _- Al). (A6)

 Next, consider the vector of estimates of the objects of interest, OA=
 A, ftp /2]'. It follows from (Al), (A2), and (A6) that

 T O OA) -D[FTTf], (A7)
 where

 1 A'( Qtk) 0
 D= 0 1 0

 -0 0 l-
 and

 44?*( y1), '1] -A

 t2(C+)Y

 , 2

 Assuming that returns and consumption growth are jointly stationary and
 ergodic, the results in Hansen (1982) imply that [FYT fI] converges in
 distribution to a normal with mean zero and covariance matrix fL. It then

 follows immediately that FT7(OA - OA) converges in distribution to N(O, DflD').
 Since we wish to conduct inference with respect to OA, we need to obtain an
 estimate of MID'. We compute this from DT TD'T, where DT is an estima-

 tor of D which uses A'( ,l) to estimate A'(,ul), and QT is the Newey-West
 (m = 11) estimator of the spectral density at frequency zero of f. This

 estimated covariance matrix corresponds to IA in equation (27).
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