# Discussion of Husted, Rogers, and Sun's Uncertainty, Currency Excess Returns, and Risk Reversals (Internal Fed Workshop on Exchange Rates, September 2017)

#### Nelson C. Mark<sup>+</sup>

<sup>†</sup>University of Notre Dame and NBER

### The Question

- Does the carry trade excess return and the risk reversal react to heightened Macro, Financial, or Policy Uncertainty in a way consistent with theory?
- Several measures of uncertainty examined.
- Yes. Evidence shows higher uncertainty raises carry trade returns and makes risk-reversals more negative.

### Background

- In another paper by HRS
  - Constructed news-based measure of US monetary policy uncertainty (MPU)
  - Showed, through VARs, that shocks to MPU are quantitatively as important as monetary policy shocks for macroeconomy
- Part of Active research program that quantifies 'uncertainty'
  - News based
    - \* Baker, Bloom, and Davis: Economic policy uncertainty
    - ★ Husted, Rogers, and Sun: US Monetary policy uncertainty
  - Data based. Surprise volatility
    - ★ VIX
    - \* Jurado, Ludvigson, and Ng: Macro and financial uncertainty
    - ★ Ozturk and Sheng: Global Macro uncertainty
    - \* Scotti: Real-time macro release surprises, global
    - \* Rossi, Sekhposyan, and Soupre: Knightian uncertainty

## Paper Highlights

- Daily currency excess returns at 3-month horizon, realtive to the US.
- Sort by  $i^* i$  into 5 portfolios.
- If *i*<sup>\*</sup> > *i*, short the USD. Otherwise, go long the USD. Rebalance portfolios every 65 days.
- Regress each portfolio's excess return on alternative measures of macroeconomic, monetary, financial uncertainty.
  - Jurado, Ludvigson, and Ng (2015, 2016): Econometric, macro and financial
  - Carlston and Ochoa (2016): Implied vol on swap rates
  - Baker, Bloom, and Davis (2015): News-based monetary policy
  - ► Husted, Rogers, and Sun (2017): Refined news-based monetary policy

#### Complete Markets Framework

• Define expected excess return

$$E_t(z_{t+1}) = E_t \ln \left[ \frac{(1+r_t^*)}{(1+r_t)} \frac{S_{t+1}}{S_t} \right] \simeq E_t(r_t^* - r_t + \Delta \ln (S_{t+1})),$$

Euler equations give

$$E_t(z_{t+1}) = \ln\left(\frac{E_t M_{t+1}}{E_t M_{t+1}^*}\right) - [E_t(\ln(M_{t+1})) - E_t(\ln(M_{t+1}^*))], \quad (1)$$

• Backus, Foresi, and Telmer (2001) show,

$$E_t(z_{t+1}) = \sum_{j=2}^{\infty} \frac{\kappa_{j,t} - \kappa_{j,t}^*}{j!},$$
(2)

 $\kappa_{j,t}$  is j - th conditional cumulant of the log SDF, Cumulants 1 - 3 are central moments 1 - 3

#### Complete Markets Framework. Assume CRRA

- Suppose foreign risky (pays premium).
- What contributes to foreign risk?

$$E_{t}(z_{t+1}) = \frac{\gamma^{2}}{2} \underbrace{\left( \textit{Var}_{t}\left(\Delta c_{t+1}\right) - \textit{Var}_{t}\left(\Delta c_{t+1}^{*}\right)\right)}_{A} + \frac{\gamma^{3}}{6} \underbrace{\left( \textit{sk}_{t}\left(\Delta c_{t+1}^{*}\right) - \textit{sk}_{t}\left(\Delta c_{t+1}\right)\right)}_{B} \right)}_{B}$$

- (A) Precautionary saving
- ► (B) Δc<sup>\*</sup><sub>t+1</sub> positively skewed, Δc<sub>t+1</sub> negatively skewed. Procyclical interest rates and foreign currency value
- How does MPU move these quantities?

### **Results Summary**

Table: Comparison of  $b_1$  estimates

| 2002m4-2015m12. t-ratios in parentheses |         |         |         |         |         |  |  |  |  |  |
|-----------------------------------------|---------|---------|---------|---------|---------|--|--|--|--|--|
| Low                                     | (2)     | (3)     | (4)     | High    | Panel   |  |  |  |  |  |
| Financial Uncertainty                   |         |         |         |         |         |  |  |  |  |  |
| 74.57*                                  | 47.99   | 32.39   | 94.28** | 21.60   | 48.39** |  |  |  |  |  |
| (2.37)                                  | (1.25)  | (1.09)  | (3.26)  | (0.58)  | (3.31)  |  |  |  |  |  |
| Macro Uncertainty                       |         |         |         |         |         |  |  |  |  |  |
| 38.61                                   | 17.10   | 45.98   | 92.99** | 113.7** | 62.45** |  |  |  |  |  |
| (1.22)                                  | (0.45)  | (1.49)  | (2.99)  | (2.83)  | (3.98)  |  |  |  |  |  |
| MPU-BBD                                 |         |         |         |         |         |  |  |  |  |  |
| 5.171*                                  | 5.803*  | 6.597** | 6.697** | 4.271   | 5.637** |  |  |  |  |  |
| (2.42)                                  | (2.19)  | (2.99)  | (2.88)  | (1.46)  | (5.09)  |  |  |  |  |  |
| Swaption Uncertainty                    |         |         |         |         |         |  |  |  |  |  |
| 9.55*                                   | 18.10** | 18.10** | 16.70** | 15.40*  | 15.40** |  |  |  |  |  |
| (2.29)                                  | (3.37)  | (4.27)  | (3.49)  | (2.41)  | (6.89)  |  |  |  |  |  |
| MPU-HRS                                 |         |         |         |         |         |  |  |  |  |  |
| -1.040                                  | 1.309   | 0.256   | -1.321  | -3.326  | -0.700  |  |  |  |  |  |
| (-0.45)                                 | (0.47)  | (0.11)  | (-0.56) | (-1.12) | (-0.61) |  |  |  |  |  |

#### Comments

- Regressing HOQ<sub>t+1</sub> on I<sub>t</sub>. Interest differential determined at t. Is this the same as regressing currency depreciation of the portfolios on MPU?
- Interest rates are 3-month TBill yields.
  - Are these tradable assets for the carry trade?
  - Can you short TBills of India, Mexico, Japan?
  - Lustig and Verdelhan used in their 2007 AER paper.
- HRS-MPU measures US monetary uncertainty.
  - Carry trade done by global investors.
  - Portfolio of carries–global return
  - ► Global measure of uncertainty versus US measure for this application

## Thinking Constructively

- A risk factor?
- $z_{t,i} = c_i + \beta_i \sigma_t + \epsilon_{t,i}$  $\bar{z}_i = a + \lambda \beta_i + \alpha_i$

Table: Two-Pass Estimation of the Single-Factor Beta-Risk Model on Monthly Carry Excess Returns

|        | Single-Factor Model   |                                                     |                                                                                                                                                         |                                                                                                                                                                                        |                                                        |                                                        |  |  |  |
|--------|-----------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|--|--|
| λ      | t-ratio               | $\gamma$                                            | t-ratio                                                                                                                                                 | $R^2$                                                                                                                                                                                  | Test-stat                                              | p-val.                                                 |  |  |  |
| -0.423 | -3.300                | 0.184                                               | 0.096                                                                                                                                                   | 0.919                                                                                                                                                                                  | 4.112                                                  | 0.533                                                  |  |  |  |
| -1.634 | -1.400                | 8.445                                               | 1.360                                                                                                                                                   | 0.351                                                                                                                                                                                  | 3.341                                                  | 0.648                                                  |  |  |  |
|        | λ<br>-0.423<br>-1.634 | λ t-ratio<br>-0.423 - <b>3.300</b><br>-1.634 -1.400 | $\begin{array}{c c} & & {\rm Singl} \\ \hline \lambda & {\rm t-ratio} & \gamma \\ -0.423 & -{\bf 3.300} & 0.184 \\ -1.634 & -1.400 & 8.445 \end{array}$ | $\begin{array}{c c} & {\rm Single-Factor} \\ \lambda & {\rm t-ratio} & \gamma & {\rm t-ratio} \\ -0.423 & -{\bf 3.300} & 0.184 & 0.096 \\ -1.634 & -1.400 & 8.445 & 1.360 \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |  |  |  |

### Thinking Constructively

- Correlations among the different measures is low.
  - Each measuring very different things. Exactly what?
- Can MPU be incorporated in modeling? Estimated an interest rate feedback rule. Plot absolute policy shocks against MPU



### Conclude

- Currency excess returns react to measures of macro/financial uncertainty
- Broader, global measures get more support
- With regard to HRS-MPU
  - Pricing fixed-income securities,
  - Understanding yield curve dynamics
- Incorporation of MPU into macro models