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Abstract
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Introduction

Let r ∼ I(0) be the return on an asset or a portfolio of assets from time t−1 to t andt

let x ∼ I(0) be a hypothesized predictor of future returns known at time t. In Þnancet

r might be the return on equity and x the log dividend yield whereas in internationalt t

economics r might be the return on the log exchange rate and x the deviation of thet t

1exchange rate from a set of macroeconomic fundamentals. To test the predictability

of the return, one can perform a short-horizon regression test by regressing the one-

period ahead return r on x and doing a t-test on the slope coefficient. However,t+1 t

empirical research in Þnance and economics frequently goes beyond this to employ a

long-horizon regression strategy in which a multi-period future return on the asset,Pky = r , is regressed on x ,t,k t+j tj=1

y = α + β x + ² , (1)t,k k k t t,k

and the null hypothesis H : β = 0 tested using a t-statistic constructed with a0 k

heteroskedastic and autocorrelation consistent (HAC) standard error. Typically, re-

searchers Þnd that there is a range over k > 1 in which the marginal signiÞcance level

of a test of no predictability is declining in k. Thus the short-horizon regression test

may fail to reject the hypothesis of no predictability whereas the long-horizon test

does reject. Not only do the asymptotic t-ratios tend to increase with horizon but
2so do point estimates of the slope coefficient and the regression R . The underlying

basis for these results are not fully understood and they are puzzling because the long-

horizon regression is built up by addition of the intervening short-horizon regressions.

As stated by Campbell, Lo, and MacKinlay (1997), �An important unresolved ques-

tion is whether there are circumstances under which long-horizon regressions have

greater power to detect deviations from the null hypothesis than do short-horizon

regressions.�

There are two aspects to this question. The Þrst is whether long-horizon regression

tests can be justiÞed on the basis of asymptotic theory. The second aspect concerns

small sample bias of OLS in the presence of a predetermined but endogenous regressor

1This line of research includes Fama and French (1988a) and Campbell and Shiller (1988) who
regressed long-horizon equity returns on the log dividend yield. See also Mishkin (1992), who ran
regressions of long-horizon inßation on long-term bond yields, Mark (1995), Mark and Choi (1997),
Chinn and Meese (1995) and Rapach and Wohar (2001) who regressed long-horizon exchange rate
returns on the deviation of the exchange rate from its fundamental value. Alexius (2001) and Chinn
and Merideth (2002) regress long-horizon exchange rate returns on long-term bond yield differentials.
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and potential small sample size distortions of the tests. This paper deals primarily

with the Þrst aspect concerning asymptotic justiÞcation.

Using local-to-zero asymptotic analysis, we show that there exist nontrivial regions

of the admissible parameter space under which long-horizon regression tests have

asymptotic power advantages over short-horizon regression tests. When the regressor

is exogenous, long-horizon regressions can have substantial local asymptotic power

advantages over short-horizon regressions but the power advantages occur in regions

either where the regression error or the predictor (or both) exhibit negative serial

correlation. While noteworthy, this does not provide the asymptotic justiÞcation

for empirical Þndings that returns are predictable. Negative serial correlation of the

regressor is not a prominent characteristic of the data used empirical applications

of long-horizon regressions nor is strict exogeneity a realistic assumption in applied

work.

Endogeneity arises in the case of stock returns because both the one-period ahead

return r and the current dividend yield x depend on the stock price at time t sot+1 t

that innovations to the time t + 1 dividend yield will in general be correlated with

the regression error in (1) even though x is not. In general, endogeneity might ariset

simply because the short-horizon predictive regression is not a structural equation

but is a linear least squares projection of the future return r onto x . When wet+1 t

relax the assumption of exogeneity in favor of a data generating process that exhibits

local-to-zero endogeneity, we Þnd that asymptotic power advantages associated with

long-horizon regression accrue in the empirically relevant region of the parameter

space�where {x } is positively autocorrelated and persistent, where the short-horizont

regression error exhibits low to moderate serial correlation, and where the innovations

to the regressor and the regression error are negatively contemporaneously correlated.

While these theoretical power comparisons are valid asymptotically and for local

alternative hypotheses, there is also the question as to whether there are any prac-

tical power advantages associated with long-horizon regression tests in samples of

small to moderate size. We investigate this issue by examining Þnite sample size-

adjusted power comparisons of long-and short-horizon regressions in a set of Monte

Carlo experiments. This analysis conÞrms that size-adjusted power advantages accrue

to long-horizon regressions even in sample sizes of 100. The power advantages are

obtained for persistent regressors in a similar but larger region of the parameter space

as was found in the asymptotic analysis�that is where the regression error exhibits

low to moderate serial correlation and its innovation is negatively correlated with
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the regressor�s innovation. Furthermore, in applied work, the researcher may choose

to focus on the horizon that gives the largest asymptotic t-ratio. Our Monte Carlo

experiments show that such a strategy works well as a horizon selection strategy to

maximize size adjusted power.

We now mention related issues and papers in the literature. The long-horizon

regressions that we study regress returns at alternative horizons on the same explana-

tory variable. The regressions admit variations in k but the horizon is constrained

to be small relative to the sample size with k/T → 0 as T → ∞. There is a dif-
ferent long-horizon regression that has been employed in the literature in which the

future k-period return (from t to t+k) is regressed on the past k-period return (from

t − k to t) [Fama and French (1988b)]. An issue that arises in this work is that the
return horizon k can be large relative to the size of the sample T . Richardson and

Stock (1989) develop an alternative asymptotic theory where k → ∞ and T → ∞
but k/T → δ ∈ (0, 1) and show that the test statistics converge to functions of

Brownian motions. Daniel (2001) studies optimal tests of this kind. Valkanov (1999)

employs the Richardson and Stock asymptotic distribution theory to the long-horizon

regressions of the type that we study when the regressor x ∼ I(1).t

A paper closely related to ours is Campbell (2001), who studied an environment

where the regressor {x } follows an AR(1) process and where the short-horizon re-t

gression error is serially uncorrelated. Using the concept of approximate slope to

measure its asymptotic power, he found that long-horizon regressions had approx-

imate slope advantages over short-horizon regressions but his Monte Carlo experi-

ments did not reveal systematic power advantages for long-horizon regressions in Þ-

nite samples. Berben (2000) reported asymptotic power advantages for long-horizon

regression when the exogenous predictor and the short-horizon regression error fol-

low AR(1) processes. Berben and Van Dijk (1998) conclude that long-horizon tests

do not have asymptotic power advantages when the regressor is unit-root nonsta-

tionary and is weakly exogenous�properties that Berkowitz and Giorgianni (2001)

corroborate by Monte Carlo analysis. Mankiw and Shapiro (1986), Hodrick (1992),

Kim and Nelson (1993), and Goetzmann and Jorion (1993), Mark (1995), and Kil-

ian (1999) study small-sample inference issues and Stambaugh (1999) proposes a

Bayesian analysis to deal with small sample bias. Kilian and Taylor (2002) examine

Þnite sample properties under nonlinearity of the data generation process and Clark

and McCracken (2001) study the predictive power of long-horizon out-of-sample fore-

casts.
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The remainder of the paper is as follows. The next section reviews two canoni-

cal examples of the use of long-horizon regression tests in the empirical Þnance and

international economics literature which motivate our study. Section 2 presents our

local-to-zero asymptotic power analysis when the regressor {x } is econometricallyt

exogenous. In section 3 we relax the exogeneity assumption in favor of a sequence

of data generating processes that exhibit local-to-zero endogeneity. We include here

as well, the results of a Monte Carlo experiment to assess Þnite sample size-adjusted

relative power comparisons of the long- and short-horizon regression tests and a pro-

cedure to Þnd the power maximizing horizon. Section 4 concludes. Derivations are

relegated to the appendix.

1 Canonical empirical examples

We illustrate and motivate the econometric issues with two canonical empirical ex-

amples. The Þrst example begins with Fama and French (1988b) and Campbell and

Shiller (1988) who study the ability of the log-dividend yield to predict future stock

returns. We revisit this work with an examination of dividend yields and returns on

the Standard and Poors (S&P) index of equities. Returns from month t to t + 1 on

the index from 1871.01 to 1995.12 are r = ln ((P +D )/P ) where P is the pricet+1 t+1 t t t

of the S&P index and D is the annual ßow of dividends from t− 11 through montht

2t. Here, the short-horizon regression is formed by annual (k = 12) returns since

dividends are an annual ßow. Campbell et. al. (1997) show how the log dividend

yield is the expected present value of future returns net of future dividend growth. If

forecasts of future dividend growth are relatively smooth, this present-value relation

suggests that the log dividend yield contains information useful for predicting future

returns.

We run the equity return regressions at horizons of 1, 2, 4, and 8 years and

compute HAC standard errors using the automatic lag selection method of Newey

and West (1994). As can be seen from panel A of Table 1, the evidence for return

predictability appears to strengthen as the horizon is lengthened. Slope coefficient
2point estimates, HAC asymptotic t-ratios, and regression R s for the stock return

regression all increase with return horizon.

In our second empirical example [see Mark (1995) and Chinn and Meese (1995)] the

2These data were used in Robert J. Shiller (2000) and were obtained from his web site.
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long-horizon regression is used to test whether standard monetary fundamentals have

predictive power for future exchange rate returns. Here, the return is the depreciation

rate of the exchange rate r = ln(S /S ) where S is the nominal exchange rate.t+1 t+1 t t

∗ ∗The regressor is x = ln(F /S ), the fundamental value is F = (M /M )(Y /Y ),t t t t t tt t

M and Y are domestic money and domestic income respectively, and asterisks refert t

to foreign country variables. According to the monetary model of exchange rate

determination, the exchange rate is the expected present value of future values of

the fundamental F . Assuming that the pricing relationship holds in the long runt

and noting that the fundamentals evolve more smoothly than the exchange rate,

suggests using the current deviation of the log exchange rate from the log fundamental

ln(F /S ) as a predictor of future exchange rate returns.t t

We revisit the long-horizon predictability of exchange rate returns with an ex-
3amination of a US�UK data set. These data provide 100 quarterly observations

spanning from 1973.1 to 1997.3. Here, S is the end-of-quarter dollar price of thet

pound, industrial production is used to proxy for income, US money is M2 and UK

money is M0 (due to availability). Exchange rate regression estimates at horizons of

1, 2, 3, and 4 years are shown in panel B of Table 1. The familiar pattern of t-ratios
2 4and regression R s increasing with horizon are present here as well.

We note that in both examples, the regressor {x } is highly persistent. Thet

augmented Dickey�Fuller and Phillips�Perron unit root tests reported in Table 2 gives

a sense of this persistence. An analysis of the entire sample of 1500 observations of

the log dividend yield allows the unit root to be rejected at the 5 percent level but

if one were to analyze the Þrst 288 monthly observations (or 24 years) the unit root

would not be rejected. Similarly, the third column of the table shows that with 24

years of data, a unit root in the deviation of the log exchange rate from the log

fundamentals cannot be rejected at standard signiÞcance levels. Failure to reject the

null hypothesis does not require us to accept it and such a decision can be guided by

the well known low power properties in small samples of unit root tests. Evidence

against a unit root is potentially stronger in an analysis of a long historical record,

as in Rapach and Wohar (2001). In the ensuing analysis, we pay close attention to

environments in which {x } is persistent but I(0).t

3These data are from Mark and Sul (2001).
4 2Note that because the dependent variable changes with k, the R s are not directly comparable

across horizons.
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2 Asymptotic power under exogeneity

The analysis in this section is based on a sequence of data generating processes with

an exogenous regressor given by

Assumption 1 (Exogeneity.) Let T be the sample size. The observations obey

∆y = β (T )x + e , (2)t+1 1 t t+1

where {x } and {e } are independent zero mean covariance stationary sequences. Thet t √
slope coefficient is given by the sequence of local alternatives β (T ) = b / T where1 1

b is a Þxed constant.1

For analytical convenience, the constant in the regression is suppressed although

a constant is included in all of our Monte Carlo simulations. The short horizon

regression is the linear least squares projection of ∆y onto x which is used tot+1 t

estimate functions of the underlying moments of the distribution between {y } andt

{x }. By construction, E(e x ) = 0 but because (2) is not a structural equation wet t+1 t

do not require the error sequence {e } to be serially uncorrelated.t

We use the following notation. C (x) = E(x x ) is the autocovariance functionj t t−j
for {x } and ρ (x) = C (x)/C (x) is its autocorrelation function. Note that ρ (x)xt j j 0 j t

is the linear least squares projection of x onto x . Analogously, the autocovariancet+j t

and autocorrelation function for {e } are denoted C (e) = E(e e ) and ρ (e) =t j t t−j j

C (e)/C (e), respectively.j 0

Using the projection representation for the regressor, x = ρ (x)x +u wheret+j j t t+j,j

u is the least squares projection error, the long-horizon regression (k > 1) obtainedt+j,j

by addition of short-horizon regressions is

y − y = β (T )x + ² , (3)t+k t k t t+k,k

where  
k−1Xb1  √β (T ) = 1+ ρ (x) ,k j

T j=1  
k k−1X Xb1  √² = e + u .t+k,k t+j t+j,j

Tj=1 j=1
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5The dependence of ² on the projection errors u vanishes asymptotically. Ast+k,k t+j,j

a result, the asymptotic variance of the OLS estimator is calculated under the null.
�The asymptotic distribution for the OLS estimator of the slope coefficient β in thek

6k−horizon regression is    
k−1³ ´ ³ ´√ XD� �   T β → N b 1+ ρ (x) , V β , (4)k 1 j k

j=1

where P∞³ ´ Ω + 2 Ω0k jkj=1�V β = , (5)k 2C (x)0

Ω = lim E (x x ² ² ) = C (x)G (e), (6)jk t−k t−j−k t,k t−j,k j j,k
T→∞

k−1X
G (e) = kC (e) + (k − s) (C (e) + C (e)) . (7)j,k j j−s j+s

s=1

Under the sequence of local alternatives, the squared t-ratio for the test of the null

hypothesis H : β = 0 has the asymptotic noncentral chi-square distribution0 k

2�Tβ Dk2 2t = → χ (λ ),kk 1�V (β )k

with noncentrality parameter

h i2Pk−12b 1+ ρ (x)j1 j=1
λ = . (8)k �V (β )k

We can now state the criterion under which a long-horizon regression test has local

asymptotic power advantage over the short-horizon regression test.

5y − y is the exact long-horizon return on the exchange rate but is only the approximatet+k t

long-horizon return on equities that pay dividends.
6See the appendix.
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Proposition 1 Let γ be the vector of parameters that characterize the data generating

process. The long-horizon regression (k > 1) test of H : β = 0 has an asymptotic0 k

local power advantage over the short-horizon regression (k = 1) test if

Ã !2 �λ β (T ) V (β )k k 1
θ(k; γ) = = > 1. (9)

�λ β (T ) V (β )1 1 k

7θ(k, γ) is the measure of relative local asymptotic power used in this paper.

In the remainder of this section, we explore whether there exist regions of the

admissible parameter space under which long-horizon regression tests satisfy (9). We

evaluate relative local asymptotic power of long-horizon regression tests under various

assumptions concerning the dynamics governing the regressor {x } and the short-t

horizon regression error {e }. The regions of the parameter space over which there aret

no power advantages to long-horizon regression hold little interest for us. Accordingly,

in the analysis to follow, we focus on parameter values under which long-horizon

regression tests do have power advantages.

We begin with the environment considered by Berben (2000) in which the regres-

sor and the regression error each follow independent AR(1) processes.

Case 1 Let {x } and {e } evolve according tot t

e = µe +m (10)t t−1 t

x = φx + v , (11)t t−1 t

iid0where (m , v ) ∼ (0, I ) and the parameter vector of the DGP is γ = (φ, µ). Lett t 2

j jg (e) ≡ G (e)/C (e). Noting that ρ (x) = φ , and ρ (e) = µ and substitutingj,k j,k 0 j j

7We assume a local alternative hypothesis because the t-test is a consistent test under a Þxed
alternative. That is, under a Þxed alternative hypothesis, the power of both the short-horizon
regression and the long-horizon t-tests are asymptotically 1. Because both tests are consistent, it is
becomes difficult to compare their asymptotic power. The analysis of power under local alternatives
lets the alternative get close to the null at the same rate as the accumulation of new information√
leads to improved precision in estimation and inference, T . This adjustment serves to offset the
power gains one would observe under a Þxed alternative. Power under local alternative remains
modest (less than 1) asymptotically thus facilitating an asymptotic comparison.
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h iPk−1j |j−s| j+sinto (7) gives g (e) = kµ + (k − s) µ + µ . The measure of relativej,k s=1

asymptotic power is  Ã ! Ã !P2 p jk φ g (e)1− φ j,1j=−p θ(k; γ) = lim . (12)Pp jp→∞ 1− φ φ g (e)j,kj=−p

For given values of µ ∈ (−1, 1) and φ ∈ (−1, 1), we evaluate (12) over horizons
k ∈ [1, 20]. The summations in forming the long-run variances are truncated at

p = 1000. Table 3 reports maximized values of θ(k; γ) for selected values of γ = (φ,

µ). Entries of θ(k; γ) = 1 indicate that local asymptotic power is maximized at

k = 1. The longest horizon for which long-horizon regression tests have local asymp-

totic power advantages (θ(k; γ) > 1) is k = 2. As can be seen, asymptotic power

advantages accrue to the long-horizon test when the regression error {e } is nega-t

tively serially correlated although the regressor {x } may exhibit either positive ort

negative serial correlation. Values for which θ(k; γ) > 1 are plotted in Figure 1 for

k = 2 for values of µ ∈ [−0.99,−0.38] and φ ∈ [0.0, 0.7]. The Þgure delineates the
region of the parameter space under which the regression test at horizon k = 2 has a

local asymptotic power advantage over the short-horizon regression.

Case 2 In this case, we allow {e } to follow an AR(2) and {x } to follow an AR(1),t t

e = µ e + µ e +m , (13)t 1 t−1 2 t−2 t

x = φx + v , (14)t t−1 t

iid0 jwhere γ = (φ, µ , µ ), (m , v ) ∼ (0, I ), and ρ (x) = φ . The Þrst-order1 2 t t 2 j

autocorrelation for {e } is ρ (e) = µ /(1−µ ). For j ≥ 2, the autocorrelation functiont 1 1 2

is obtained recursively by the Yule-Walker equations, ρ (e) = µ ρ (e) + µ ρ (e).j 1 j−1 2 j−2
It follows that θ(k, γ) is given by (12) with g (e, γ) ≡ G (e, γ)/C (e, γ) = kρ (e) +j,k j,k 0 jPk−1(k − s) [ρ (e) + ρ (e)]. The admissible region of the parameter space is φ ∈j−s j+ss=1

(−1, 1) and the triangular region for (µ , µ ) that ensures that {e } is stationary.1 2 t

Table 4 displays selected values of θ(k; γ) in the region of positive serial correla-

tion (φ ∈ (0, 1)) of the regressor along with the horizon under which the measure of
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8relative asymptotic power is maximized. The table also shows the Þrst two autocor-

relations for {e } and the variance ratio statistic for {e } at horizon 10 as a summaryt t

statistic for the autocorrelation function of the error term. From the results given in

the top half of the table, it can be seen that for persistent regressors (large φ), modest

power gains are available to long-horizon regression tests when both {x } and {e }t t

are persistent. The dramatic asymptotic power advantages, however, accrue to the

long-horizon regression test when the error term exhibits negative serial correlation.

To highlight the subregions of the parameter space under which power advantages

are obtained Figure 2 displays plots of θ(k; γ) > 1 in regions of persistent {x }. Eacht

Þgure corresponds to a given value of φ. Power advantages of long-horizon regression

test are seen to be concentrated in the region of complex roots where the autocorre-

lation function of {e } ßuctuates in sign.t

Case 3 We now assume that the error term follows an AR(1) and the regressor

follows an AR(2),

e = µe +m , (15)t t−1 t

x = φ x + φ x + v , (16)t 1 t−1 2 t−2 t

iid jwhere γ = (φ ,φ , µ), (m , v ) ∼ (0, I ), ρ (e) = µ , and g (e, γ) ≡ G (e, γ)/C (e, γ) =1 2 t t 2 j j,k j,k 0³ ´Pk−1j |j−s| j+skµ + µ + µ . The autocorrelation function for {x } is obtained recur-ts=1

sively for j > 1 by ρ (x) = φ ρ (x) + φ ρ (x) with ρ (x) = φ /(1 − φ ). Thej 1 j−1 2 j−2 1 1 2

measure of relative asymptotic power of the long-horizon regression test here is  2 Ppk−1X ρ (x)g (e, γ)j j,1 j=−p θ(k; γ) = lim 1+ ρ (x) .P j pp→∞ ρ (x)g (e, γ)j j,kj=−pj=1

Table 5 reports θ(k; γ) evaluated at selected parameter values. As in cases 1 and 2,

local asymptotic power advantages are available to long-horizon regression when the

regression error {e } is negatively serially correlated. For µ ∈ (−1, 0], sizable relativet

asymptotic local power accrues to the long-horizon test when {x } is persistent butt

in regions where the sign of the autocorrelations oscillate. For example, a measure of

8Local asymptotic power advantages were also found to accrue to long-horizon regression in the
region of φ ∈ (−1, 0) but these results are not shown as this is not empirically relevant.
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relative power of 97.0 is obtained under high persistence of the regressor�the variance

ratio of {x } at horizon 10 is 4.7. In regions of modest negative serial correlation oft

{e } (e.g., µ = −0.42) and ρ (x) > 0 for all j, long-horizon regression tests have mucht j

smaller power advantages (θ = 1.097). Under case 3, we Þnd that relative power is

maximized at horizons in the range k ∈ [1, 10].
Figure 3 plots θ(k; γ) for selected parameter values under case 3. Each Þgure

corresponds to a Þxed value of µ. As can be seen, relative asymptotic power is most

sensitive to the properties of the regression error {e }. The more negatively seriallyt

correlated is {e }, the larger the statistical advantage accruing to the long-horizont

test.

To summarize, when the regressor is econometrically exogenous, potential asymptotic

power advantages are available to long-horizon regression tests where the regressor is

persistent. These power advantages tend to be quite modest when the short-horizon

regression error exhibits low or positive serial correlation but can be quite dramatic

when the error is negatively serially correlated. The explanation for this result lies

in the following: The behavior of θ(k, γ) over variations in k is governed by the ef-

fects of k on the ratio of the slope coefficients and the ratio of the variances as seenPk−1in (9). When the regressor is persistent, β (T )/β (T ) = ρ (x) is increasing ink 1 jj=1

�k. V (β (T )) is also increasing over a range in k but this is attenuated by negativek

serial correlation in {e }. As a result, there is a range over k in which the decline int
2� �V (β (T ))/V (β (T ) is more than offset by the increase in (β (T )/β (T )) .1 k k 1

Large negative serial correlation of the regression error, however, is not a feature of

either stock return or foreign exchange return data so the cases that we have studied

in this section are probably not relevant to the empirical work. Moreover, because

the short-horizon regression is not a structural equation the assumption of exogeneity

is typically violated in applications. In the next section, we relax the exogeneity

assumption.

3 Asymptotic power under endogeneity

In the short-horizon regression for stock returns discussed in section 1, we regressed

r = ln(P + D ) − lnP on x = lnD − lnP . While regression error is un-t+1 t+1 t t t t−1 t

correlated with the regressor by construction, the exogeneity of {x } in this case ist

an untenable assumption. This is because both r and x depend on lnP andt+1 t+1 t+1
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we would thus expect that the regression error and the innovation to {x } to bet

negatively correlated, E(v e ) < 0. Similarly, in the short-horizon regression fort+1 t+1

exchange rates, we regress r = lnS − lnS on x = lnF − lnS and expectt+1 t+1 t t+1 t+1 t+1

the innovation to {x } and the short-horizon regression error to be negatively cor-t+1

related. The predicted negative correlation in the innovations to the regression error

and to the regressor are in fact present in the data. When we Þt a Þrst-order vector
0autoregression to (e , v ) , we estimate an innovation correlation of -0.948 for stockst t

and -0.786 for exchange rates.

A simple vector error correction model (VECM) makes a similar point. As an
0example, suppose that the bi-variate sequence {(y , z ) } obeys the Þrst-order VECMt t

with cointegration vector (−1, 1) and equilibrium error x = z − y ,t t t        
∆y δ x a a ∆y ²t 1 t−1 11 12 t−1 t        = + + . (17)
∆z δ x a a ∆z ut 2 t−1 21 22 t−1 t

To relate the VECM to the empirical examples, in the case of equity returns, yt

is the log price of the equity portfolio and z is the log dividend. From Campbell et.t

al. (1997), the return on equity has the approximate representation r ' ζ∆y +t+1 t+1

(1− ζ)x , where ζ is the implied discount factor using the average dividend yield ast

the discount rate. In the analysis of exchange rates, ∆y is the exchange rate returnt

and z is the log of the fundamentals.t

The VECM (17) has the equivalent restricted vector autoregressive (VAR) repre-

sentation for (∆y , x ),t t    
∆y (a + a ) (δ + a ) ∆yt 11 12 1 12 t−1    =
x (a − a + a − a ) (1+ δ − δ + a − a ) xt 22 12 21 11 2 1 22 12 t−1    

0 −a ∆y ²12 t−2 t    + + . (18)
0 (a − a ) x u − ²12 22 t−2 t t

By inspection of (18), {x } and {∆y } are correlated both contemporaneously andt t

dynamically (at leads and lags). Writing out the Þrst equation of (18) and advancing

the time index gives,

∆y = (δ + a )x + ((a + a )∆y − a x + ² ) . (19)t+1 1 12 t 11 12 t 12 t−1 t+1

When the observations are generated by the VECM, the slope coefficient in the

short-horizon predictive regression of ∆y on x is δ + a . The regression error,t+1 t 1 12

12



(a +a )∆y −a x + ² is serially correlated and is also correlated with x . The11 12 t 12 t−1 t+1 t

latter correlation is innocuous, however, because the objective of the short-horizon

regression is not to estimate this δ + a per se, but it is to estimate the projection1 12

coefficient of ∆y on x which includes the correlation between the regressor x andt+1 t t

(∆y , x ) in the error term.t t−1

3.1 Local-to-zero endogeneity

The VECM motivates the presumption that the regressor in the short-horizon predic-

tive regression is endogenous but that framework is somewhat cumbersome to work

with. In this section, we will investigate local asymptotic power properties of short-

and long-horizon regression with the more convenient representation given in

Assumption 2 (Local endogeneity.) The observations obey

∆y = b (T )x + e , (20)t+1 1 t t+1

x = ρ (x)x + u , (21)t+1 1 t t+1,1

where ρ (x)x is the linear least squares projection of x onto x and u is the1 t t+1 t t+1,1

associated projection error. The errors (e , u ) are covariance stationary and havet t,1

the Wold representation    
e mt t−j   = Ψ(L, T ) , (22)
u nt,1 t−j

 
ψ ψ (T )P 11,j 12,j ψ ψ∞ 12,j 21,j  √ √where Ψ(L, T ) = , ψ (T ) = ψ (T ) = ,12,j 21,jj=0 T Tψ (T ) ψ21,j 22,j 

1 ρ (T )iid mn ρ0 mn  √(m ,n ) ∼ [0,Σ(T )] , Σ(T ) = , ρ (T ) = . Thet t mn Tρ (T ) 1mn

ψ , r, s = 1, 2, for all j > 0 and ρ are Þxed constants.rs,j mn

Endogeneity is regulated through ψ (T ),ψ (T ) and ρ (T ) and is local-to-zero21,j 12,j mn

in the sense that E (e u ) → 0 as T → ∞ for all j. Projecting e onto xt t−j,1 t+1 t

gives the representation e = c (T, γ)x + a where a is the projection errort+1 1 t t+1 t+1√
and c (T, γ) = c (γ)/ T is the projection coefficient. For given values of the DGP1 1

parameter vector γ, c (γ) is a Þxed constant. The dependence of c (γ) on γ will be1 1

13



clariÞed below when we consider speciÞc parameterizations of the DGP. At this point,

we exploit the projection representation of the error term to purge the endogeneity

in the short-horizon regression

∆y = β (T, γ)x + ² , (23)t+1 1 t t+1,1

√
where ² = a , β (T, γ) = b (T ) + c (T, γ), and b (T ) = b / T . The projec-t+1,1 t+1 1 1 1 1 1

tion error a = ² is constructed to be uncorrelated with x but will in generalt+1 t+1,1 t

exhibit local-to-zero dependence on x for j 6= 0.t−j
Adding together the short-horizon regression (23) at t + 1 and t + 2 gives the

local-to-zero two-period horizon regression,

y − y = β (T, γ) [1+ ρ (x)] x + (a + a + β (T, γ)u ) .t+2 t 1 1 t t+2 t+1 1 t+1,1

Due to the local-to-zero dependence of a on x , the two-horizon slope coefficientt+2 t

obtained here differs from that obtained previously when x is exogenous, β (T, γ) 6=t 2

β (T, γ)[1+ρ (x)]. We can, however, characterize the two-horizon slope coefficient as1 1 √ √
β (T, γ) = (b + c (γ)) / T where c (γ)/ T arises from the local-to-zero endogeneity2 2 2 2

of the regressor. In general, we can write the long-horizon regression as

y − y = β (T, γ)x + ² , (24)t+k t k t t+k,k

√
where β (T, γ) = (b + c (γ)) / T . Under local-to-zero endogeneity, potentially largek k k

power advantages for long-horizon regression exist if β (T, γ)/β (T, γ) =k 1

(b + c (γ)) / (b + c (γ)) grows (locally) at a faster rate with k than it does underk k 1 1

exogeneity. This will be the case if (b /b ) > (c (γ)/c (γ)) . Indeed, the relative powerk 1 k 1

advantage becomes arbitrarily large as b + c (γ)→ 0.1 1

To determine relative asymptotic power, we use Proposition 1 which continues to

apply. We now consider

14



Case 4 Let the observations be generated by

∆y = b (T )x + e , (25)t+1 1 t t+1

x = φx + v , (26)t+1 t t+1      
e a a (T ) e mt 11 12 t−1 t      = + , (27)
v 0 0 v nt t−1 t

where    
m 1 ρ (T )t iid mn   ∼ [0,Σ(T )] , Σ(T ) = ,
n ρ (T ) 1t mn

b a ρ1 12 mn√ √ √b (T ) = , a (T ) = , ρ (T ) = ,1 12 mn
T T T

γ = (φ, b , a , a , ρ ), |a | < 1, ρ (x) = φ ∈ (−1, 1), and v = u is the error1 11 12 mn 11 1 t+1 t+1,1

in the projection of x onto x .t t−1

In the appendix, we show that the short-horizon regression is∆y = β (T, γ)x +t+1 1 t√
² with slope coefficient β (T, γ) = (b + c (γ)) / T wheret+1,1 1 1 1

³ ´c (γ) E(e x ) a + a ρ1 t+1 t 12 11 mn 2√ √= = 1− φ . (28)
2E(x )T T (1− a φ)t 11

The long-horizon regression is y − y = β (T, γ)x + ² with slope coefficientt+k t k t t+k,kÃ ! Ã !
k kb 1− φ c (γ) 1− a1 1 11√ √β (T, γ) = + . (29)k

1− φ 1− aT T 11

Figure 4 plots the ratio of the slope coefficientsµ ¶³ ´ kk 1−a1−φ 11b + c (γ)1 11−φ 1−a11β (T, γ)k
= , (30)

β (T, γ) b + c (γ)1 1 1

for a = 0.5, a = −0.1, ρ = −0.1, b = 0.1,φ = 0.9 where c (γ) is given in (28).11 12 mn 1 1

For comparison, the Þgure also displays the ratio that obtains under exogeneity,
kβ (T )/β (T ) = (1 − φ )/(1 − φ) with φ = 0.9. As can be seen, when the regressork 1

is endogenous, the ratio of the slopes increases with k at a faster rate and lies above
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9the ratio when the regressor is exogenous for the values of k = 1, . . . , 16 considered.

The measure of relative asymptotic power under case 4 is Ã ! P2 p jφ g (e)β (T, γ) j,1k j=−p θ(k; γ) = lim . (31)Pp jp→∞ β (T, γ) φ g (e)1 j,kj=−p

where the ratio of the slope coefficients is given in (30) and because the endogeneity is

local-to-zero (a (T )→ 0 as T →∞), the asymptotic variances are computed under12

the null hypothesis. The formulae for g (e) therefore follow as in case 1.j,k

Table 6 reports values θ(k, γ) for a persistent regressor (φ = 0.95), moderate

asymptotic serial correlation for the regression error (a = 0.5) and varying degrees11

of endogeneity (ρ ∈ [−0.9, 0.9], a ∈ [−0.9, 0.3]). We note that there is a diagonalmn 12

band along (ρ , a ) pairs for which long-horizon regression tests have local asymp-mn 12

totic power advantages. For values of ρ ∈ [0.1, 0.9], displayed in the top portion ofmn

the table, we obtain values of θ(k; γ) > 1 either when the regressor and the regres-

sion error are negatively correlated at all leads and lags E(x e ) < 0 for all j andt−j t

Þnite T (which occurs for relatively low a values), or when the error is negatively12

correlated with past values of x (E(x e ) < 0 for j > 1), and positively correlatedt t−j t

(E(x e > 0, for j ≤ 1) with future x which occurs with relatively large values oft−j t t

a . In the second two panels (ρ ∈ [−0.9, 0.1] and a ∈ [−0.8, 0.3]), E(x e ) < 012 mn 12 t−j t

for all j.

The ratio of the slope coefficients depend on ρ and a but the asymptoticmn 12

variances do not. As a result, the same values of θ(k; γ) are found to recur for alter-

native values of γ. We Þnd θ(13) = 890.50 with (ρ , a ) = (0.7,−0.9), (0.5,−0.8),mn 12

(0.3,−0.0), (7.1,−0.6), (−0.1, 0.5), (−0.3,−0.4), (−0.5,−0.4), (−0.8,−0.6) and
(−0.9,−0.5). The long-horizon regression test has local asymptotic power advan-
tages both in empirically relevant regions of the parameter space as well as in regions

that do not conform to our canonical empirical examples (ρ > 0).mn

Table 7 reports the analogous local asymptotic power comparisons for

ρ ∈ [−0.9, 0.9], a ∈ [−0.9, 0], a persistent regressor φ = 0.95, and low asymptoticmn 12

serial correlation in the regression error a = 0.1. The long-horizon regression test11

has local asymptotic power advantages in a larger region of (ρ , a ) than obtainedmn 12

for a = 0.5. The largest long-horizon regression power gains occur in the region11

9The ratio of the long-horizon to short-horizon regression slope coefficients is bounded from
�above as k increases. Local power also is bounded from above as k increases since V (β ) is foreverk

increasing in k.

16



ρ < 0 and a < 0 and E(x e ) ≤ 0 for all j and Þnite T .mn 12 t−j t

Asymptotic serial correlation in {e } is not necessary (nor, as we have seen suf-t

Þcient) to give rise to asymptotic power advantages in the long-horizon regression

test. In table 8, we set a = 0 and observe that local power advantages accrue in the11

region a < 0.12

Before concluding this section, we note that Campbell (2001) studied asymptotic

power of long- and short-horizon regressions in a model with endogeneity in which

the short-horizon regression error is serially uncorrelated and negatively correlated

with the innovation to x . He showed that long-horizon regression tests had ap-t+1

proximate slope advantages over short-horizon regression tests but did not Þnd Þnite

sample power advantages in his Monte Carlo experiments. We cannot make a direct

comparison to his work because his approximate slope analysis was done under a Þxed

alternative. The closest approximation that we can make to Campbell�s environment

is by setting a = a = 0. But under local-to-zero endogeneity, when a = 0 nei-11 12 11

ther the slope coefficients nor the asymptotic OLS variances depend on ρ and thismn

brings us back to case 1 with µ = 0 which is a conÞguration under which long-horizon

regression tests have no local power advantages over short-horizon regression tests.

3.2 Monte Carlo Experiments

While our primary focus lies in understanding whether there are conditions under

which long-horizon regression tests have local asymptotic power advantages, it is the

Þnite sample properties of the tests that are of ultimate interest. A potential pitfall

of local asymptotic analysis is that the effect of critical nuisance parameters (e.g., a12

and ρ ) are eliminated from the asymptotic variances, although not from evaluationmn

of the ratio of the slope coefficients.

This section reports the results of a small Monte Carlo experiment that corre-

sponds to case 4. The experiment should shed light on two questions. The Þrst

question is whether the power advantages of long-horizon regression predicted by the

local asymptotic analysis is present in samples of small to moderate size. If so, then

the second question is whether the small sample power advantages accrue in roughly

the same region of the parameter space as predicted by the asymptotic analysis.

The DGP for our Monte Carlo experiment is modeled after case 4 which exhibits

endogeneity. We consider a sample size of T = 100 and performed 2000 replications

for each experiment. The DGP under the null hypothesis is given by b = a = ρ .1 12 mn

Under the alternative hypothesis, b = 0.1 and a range of a and ρ are considered.1 12 mn
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HAC standard errors are given by the quadratic-spectral kernel estimator discussed

in Andrews (1991).

Table 9 reports the maximum size-adjusted relative power of a one-sided long-

horizon regression test at the 5 percent level over horizons 1 through 20. Under

both the null and alternative hypotheses we set a = 0.5,φ = 0.95. Finite sample11

power advantages are seen to accrue to long-horizon regression tests. The region

of the parameter space that predicts local asymptotic power advantages for long-

horizon regression tests is evidently a subset of the region that gives Þnite sample

power advantage. In table 10, we report the results of an analogous experiment with

a = 0.1 under both the null and the alternative. Long-horizon regression tests11

continue to provide Þnite sample power advantages over short-horizon regressions

under a linear data generating process and over a larger region of the parameter

space than that predicted by the asymptotic analysis. By comparing the results in

this table to table 7 we see that size-adjusted power tends to be maximized at or near

the same horizons that maximize local asymptotic power.

In the asymptotic analysis, we found that the optimal horizon�the k that maxi-

mizes local asymptotic power�is

∗k = argmax{θ(k, γ)}. (32)

In applied work, the researcher is typically confronted with many choices of k and may

focus on the horizon that gives the largest t-ratio. We investigate whether a strategy
2�of choosing k to maximize the sample counterpart to (32), θ(k) = (t /t ) correctlyk 1

identiÞes the horizon that maximizes size adjusted power. For a given collection of n

horizons k = k , . . . , k , call the test of the null hypothesis using the largest t-statistic1 n

∗the t test,k

∗t = max (t , . . . t ) . (33)k k kn1

∗Table (11) reports features of the empirical distribution of the t test. The DGP isk

identical to that used to produce Table 9. Rows labeled A exhibit the size-adjusted

∗ ∗power of the t test. We also report the size-adjusted power of the t test relativek k

to the size-adjusted power of the short-horizon test (rows labeled B) and the optimal
∗horizon k (rows labeled E) which can be compared to the values in table 10 were the

test is conducted knowing the optimal horizon. Comparison of these entries to the

∗population values of the maximal θ(k, γ) and optimal k in Table 9 shows that the tk

test performs reasonably well in selecting the optimal horizon.
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4 Conclusion

In this paper we provide asymptotic justiÞcation for employing long-horizon predictive

regressions to test the null hypothesis of no predictability. It is worth emphasizing
10that our results are obtained in a linear environment. Local asymptotic power

advantages accrue to long-horizon regression tests whether the regressor is exogenous

or endogenous although the assumption of exogeneity is often untenable in applied

work. Under an endogenous regressor, we Þnd that both local asymptotic power

advantages as well as Þnite sample size-adjusted power advantages accrue to long-

horizon regression tests in empirically relevant regions of the parameter space. The

Þnite sample power advantages to long-horizon regression obtained in our Monte Carlo

experiments are not the artifact of small sample bias or size distortion.

Our results also lend support to empirical Þndings that equity returns and ex-

change rate returns are predictable. Local asymptotic power advantages for long-

horizon regression tests were found to be most dramatic for empirically plausible

regions of the parameter space� that is when the regressor is persistent and exhibits

endogeneity, and where its innovations and the innovations to the short-horizon re-

gression error are negatively correlated.

10This is notable in light of Kilian and Taylor�s (2001) conjecture that long-horizon regression
tests have power advantages only against a nonlinear alternative.
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Table 1: Illustrative Long-Horizon Regressions

A. Returns on S&P index
Horizon in years

1 2 4 8
�β 0.131 0.263 0.483 0.833
t-ratio 2.827 3.333 3.993 5.445
2R 0.151 0.285 0.492 0.701

B. Returns on $/$ exchange rate
Horizon in years

1 2 3 4
�β 0.201 0.420 0.627 0.729
t-ratio 2.288 3.518 5.706 5.317
2R 0.172 0.344 0.503 0.606

Notes: Stock return data are monthly observations from 1871.01 to 1995.12. Foreign
exchange return data are quarterly observations from 1973.1 to 1997.3.

Table 2: Persistence of {x } in the data.t

Dividend Dividend Deviation from
yield T=1500 yield T=288 fundamentals T=100

ADF τ -3.58 -2.02 -1.66c

τ -4.29 -2.66 -1.31t

PP τ -3.45 -1.87 -1.78c

τ -4.09 -2.25 -1.63t

AC 1 0.986 0.985 0.940
6 0.883 0.859 0.648
12 0.732 0.670 0.273
24 0.544 0.367 0.094
36 0.474 0.161 -0.170

Notes: τ (τ ) is the studentized coefficient for the unit root test with a constant (trend).c t

ADF is the augmented Dickey�Fuller test and PP is the Phillips�Perron test. Approximate

critical values for τ for T = 1500, 288, 100 are -2.86, -2.86, and -2.89, respectively at thec

5% level and -2.57, -2.57, and -2.58, respectively at the 10% level. Approximate critical

values for τ for T = 1500, 288, 100 are -3.41, -3.43, and -3.45 respectively at the 5% levelt

and -3.12, -3.13, and -3.15 respectively at the 10% level. AC is the autocorrelation.
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Table 3: Local asymptotic power under case 1. Maximized θ(k; γ) for selected values
of γ = (φ, µ).

µ
φ -0.95 -0.85 -0.75 -0.65 -0.55 -0.45 -0.35
-0.81 3.362 1.069 1.000 1.000 1.000 1.000 1.000
-0.61 6.160 1.974 1.137 1.000 1.000 1.000 1.000
-0.41 8.198 2.652 1.543 1.067 1.000 1.000 1.000
-0.21 9.476 3.103 1.829 1.283 1.000 1.000 1.000
-0.01 9.994 3.328 1.995 1.423 1.106 1.000 1.000
0.19 9.752 3.326 2.041 1.490 1.184 1.000 1.000
0.39 8.750 3.097 1.967 1.482 1.213 1.042 1.000
0.59 6.988 2.642 1.773 1.400 1.193 1.062 1.000
0.79 4.466 1.960 1.459 1.244 1.125 1.049 1.000

Note: Values of θ(k; γ) > 1 obtained only for k = 2. Values of θ(k; γ) = 1 occur
when k = 1, in which case long horizon regression tests have no asymptotic power
advantage.

Table 4: Local asymptotic power for case 2. Selected θ(k; γ), γ = (φ, µ , µ ).1 2

θ(k; γ) k φ µ µ VR [10] ρ (e) ρ (e)1 2 e 1 2

1.099 19 0.980 1.880 -0.960 5.145 0.959 0.843
1.197 14 0.880 1.800 -0.960 2.406 0.918 0.693
1.169 16 0.980 1.840 -0.960 3.565 0.939 0.767
1.197 14 0.880 1.800 -0.960 2.406 0.918 0.693
1.216 14 0.980 1.800 -0.960 2.406 0.918 0.693
1.197 14 0.880 1.800 -0.960 2.406 0.918 0.693
1.216 14 0.980 1.800 -0.960 2.406 0.918 0.693
88.997 15 0.880 -1.920 -0.960 0.065 -0.980 0.921
57.359 2 0.780 -1.880 -0.920 0.059 -0.979 0.921
45.520 2 0.680 -1.800 -0.840 0.050 -0.978 0.921
29.953 2 0.480 -1.600 -0.640 0.036 -0.976 0.921
20.967 7 0.880 -1.760 -0.920 0.076 -0.917 0.693
11.011 9 0.980 -1.840 -0.920 0.083 -0.958 0.843
10.107 5 0.680 -1.640 -0.840 0.063 -0.891 0.622

Notes: VR [10] is the variance ratio statistic at horizon 10 for the error term, {e }.e t
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Table 5: Local asymptotic power for case 3. Selected θ(k; γ), γ = (φ ,φ , µ).1 2

θ(k, γ) k µ φ φ VR [10] ρ (x) ρ (x)1 2 x 1 2

96.990 2 -0.920 0.000 0.960 4.689 0.000 0.960
72.375 2 -0.920 0.000 0.920 4.397 0.000 0.920
44.031 2 -0.920 -0.040 0.840 2.734 -0.250 0.850
25.291 2 -0.920 -0.120 0.800 1.230 -0.600 0.872
15.611 2 -0.920 -0.040 0.480 1.898 -0.077 0.483
9.519 2 -0.920 0.320 0.360 4.078 0.500 0.520
5.640 2 -0.920 0.480 0.080 3.033 0.522 0.330
3.742 2 -0.720 0.160 0.600 4.601 0.400 0.664
1.169 10 -0.920 -1.720 -0.800 0.067 -0.956 0.844
1.407 8 -0.920 -1.600 -0.760 0.070 -0.909 0.695
1.588 6 -0.920 -1.440 -0.640 0.071 -0.878 0.624
1.002 3 -0.220 -0.120 0.800 1.230 -0.600 0.872
1.010 3 -0.220 0.240 0.720 8.639 0.857 0.926
2.385 2 -0.920 0.600 0.360 8.878 0.938 0.923
1.142 2 -0.620 0.600 0.360 8.878 0.938 0.923
1.097 2 -0.420 0.360 0.600 8.799 0.900 0.924

Notes: VR [10] is the variance ratio statistic at horizon 10 for the regressor, {x }.x t
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Table 6: Local asymptotic power for case 4. θ(k; γ) with a = 0.5, b = 0.1,φ = 0.95.11 1

a12
ρ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0mn

0.9 16.805 4.133 1.996 1.274 1.005 1 1 1 -0.1 0.0
(11) ( 9) (8) (5) (2) (1) (1) (1) (1) (1)

0.8 84.361 7.24 2.741 1.554 1.098 1 1 1 (1) (1)
(12) (10) (9) (7) (4) (1) (1) (1) (1) (1)

0.7 890.50 16.805 4.133 1.996 1.274 1.005 1 1 1 1
( 13) (11) (9) (8) (5) (2) (1) (1) (1) (1)

0.6 29.813 84.361 7.24 2.741 1.554 1.098 1 1 1 1
(13) (12) (10) (9) (7) (4) (1) (1) (1) (1)

0.5 8.647 890.50 16.805 4.133 1.996 1.274 1.005 1 1 1
(14) (13) (11) (9) (8) (5) (2) (1) (1) (1)

0.4 3.929 29.813 84.361 7.24 2.741 1.554 1.098 1 1 1
(15) (13) (12) (10) (9) (7) (4) (1) (1) (1)

0.3 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005 1 1
(15) (14) (13) (11) (9) (8) (5) (2) (1) (1)

0.2 1.367 3.929 29.813 84.361 7.24 2.741 1.554 1.098 1 1
(16) (15) (13) (12) (10) (9) (7) (4) (1) (1)

a12
ρ -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1mn

0.1 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005 1 1
(15) (14) (13) (11) (9) (8) (5) (2) (1) (1)

0 1.367 3.929 29.813 84.361 7.24 2.741 1.554 1.098 1 1
(16) (15) (13) (12) (10) (9) (7) (4) (1) (1)

-0.1 1 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005 1
(1) (15) (14) (13) (11) (9) (8) (5) (2) (1)

-0.2 1 1.367 3.929 29.813 84.361 7.24 2.741 1.554 1.098 1
(1) (16) (15) (13) (12) (10) (9) (7) (4) (1)

-0.3 1 1 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005
(1) (1) (15) (14) (13) (11) (9) (8) (5) (2)

-0.4 1 1 1.367 3.929 29.813 84.361 7.24 2.741 1.554 1.098
(1) (1) (16) (15) (13) (12) (10) (9) (7) (4)

a12
ρ -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3mn

-0.5 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005 1 1
(15) (14) (13) (11) (9) (8) (5) (2) (1) (1)

-0.6 1.367 3.929 29.813 84.361 7.24 2.741 1.554 1.098 1 1
(16) (15) (13) (12) (10) (9) (7) (4) (1) (1)

-0.7 1 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005 1
(1) (15) (14) (13) (11) (9) (8) (5) (2) (1)

-0.8 1 1.367 3.929 29.813 84.361 7.24 2.741 1.554 1.098 1
(1) (16) (15) (13) (12) (10) (9) (7) (4) (1)

-0.9 1 1 2.188 8.647 890.50 16.805 4.133 1.996 1.274 1.005
(1) (1) (15) (14) (13) (11) (9) (8) (5) (2)
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Table 7: Local asymptotic power for case 4. θ(k; γ) with a = 0.10, b = 0.1,φ = 0.95.11 1

Optimal horizon in parentheses.

a12
ρ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0mn

0.9 36.113 11.042 5.425 3.286 2.251 1.672 1.32 1.1 1 1
(8) (8) (7) (6) (6) (5) (4) (3) (1) (1)

0.8 42.918 12.079 5.757 3.432 2.329 1.718 1.348 1.118 1 1
(8) (8) (7) (7) (6) (5) (4) (3) (1) (1)

0.7 51.886 13.275 6.122 3.591 2.411 1.765 1.378 1.136 1 1
(8) (8) (7) (7) (6) (5) (4) (3) (1) (1)

0.6 64.05 14.663 6.524 3.761 2.499 1.815 1.408 1.155 1.009 1
(8) (8) (7) (7) (6) (5) (4) (3) (2) (1)

0.5 81.144 16.288 6.97 3.945 2.591 1.868 1.44 1.174 1.019 1
(9) (8) (7) (7) (6) (5) (4) (3) (2) (1)

0.4 106.282 18.207 7.465 4.144 2.689 1.923 1.473 1.194 1.03 1
(9) (8) (7) (7) (6) (5) (5) (4) (2) (1)

0.3 145.39 20.497 8.018 4.359 2.794 1.981 1.509 1.218 1.041 1
(9) (8) (7) (7) (6) (5) (5) (4) (2) (1)

0.2 211.17 23.26 8.639 4.592 2.905 2.042 1.548 1.242 1.052 1
(9) (8) (8) (7) (6) (5) (5) (4) (2) (1)

0.1 334.915 26.637 9.342 4.846 3.024 2.108 1.587 1.267 1.067 1
(9) (8) (8) (7) (6) (6) (5) (4) (3) (1)

0 612.179 30.827 10.137 5.123 3.151 2.178 1.629 1.293 1.083 1
(9) (8) (8) (7) (6) (6) (5) (4) (3) (1)

-0.1 1463.86 36.113 11.042 5.425 3.286 2.251 1.672 1.32 1.1 1
(9) (8) (8) (7) (6) (6) (5) (4) (3) (1)

-0.2 7179.029 42.918 12.079 5.757 3.432 2.329 1.718 1.348 1.118 1
(9) (8) (8) (7) (7) (6) (5) (4) (3) (1)

-0.3 149456.8 51.886 13.275 6.122 3.591 2.411 1.765 1.378 1.136 1
(9) (8) (8) (7) (7) (6) (5) (4) (3) (1)

-0.4 3447.781 64.05 14.663 6.524 3.761 2.499 1.815 1.408 1.155 1.009
(9) (8) (8) (7) (7) (6) (5) (4) (3) (2)

-0.5 1005.906 81.144 16.288 6.97 3.945 2.591 1.868 1.44 1.174 1.019
(9) (9) (8) (7) (7) (6) (5) (4) (3) (2)

-0.6 470.857 106.282 18.207 7.465 4.144 2.689 1.923 1.473 1.194 1.03
(9) (9) (8) (7) (7) (6) (5) (5) (4) (2)

-0.7 271.451 145.39 20.497 8.018 4.359 2.794 1.981 1.509 1.218 1.041
(9) (9) (8) (7) (7) (6) (5) (5) (4) (2)

-0.8 176.073 211.17 23.26 8.639 4.592 2.905 2.042 1.548 1.242 1.052
(9) (9) (8) (8) (7) (6) (5) (5) (4) (2)

-0.9 123.222 334.915 26.637 9.342 4.846 3.024 2.108 1.587 1.267 1.067
(9) (9) (8) (8) (7) (6) (6) (5) (4) (3)
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Table 8: Local asymptotic power for case 4. θ(k; γ), a = 0.0, b = 0.1,φ = 0.95.11 1

Optimal horizon in parentheses.

a θ(k; γ) k a θ(k; γ) k12 12

-0.9 40.636 8 0.1 1.000 1
-0.8 13.037 7 0.2 1.000 1
-0.7 6.494 7 0.3 1.000 1
-0.6 3.948 6 0.4 1.000 1
-0.5 2.697 6 0.5 1.000 1
-0.4 1.991 5 0.6 1.000 1
-0.3 1.553 4 0.7 1.000 1
-0.2 1.269 4 0.8 1.000 1
-0.1 1.083 3 0.9 1.000 1
0.0 1.000 1

Note: θ(k, γ) is invariant to ρ when a = 0.mn 11
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Table 9: Monte Carlo experiment for case IV. Relative size-adjusted power a =11

0.5, b = 0.1,φ = 0.95, optimal horizon in parentheses. T = 100.1

a12
ρ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0mn

0.9 5.4 2.8 1.8 1.3 1.1 1.0 1.0 1.0 1.0 1.0
(12) (9) (6) (4) (2) (1) (1) (1) (1) (1)

0.8 6.4 3.5 2.1 1.4 1.1 1.0 1.0 1.0 1.0 1.0
(10) (10) (10) (5) (3) (1) (1) (1) (1) (1)

0.7 8.9 5.1 2.8 1.7 1.3 1.0 1.0 1.0 1.0 1.0
(12) (10) (10) (5) (4) (2) (1) (1) (1) (1)

0.6 10.3 6.2 3.5 2.1 1.4 1.0 1.0 1.0 1.0 1.0
(12) (11) (9) (9) (7) (4) (1) (1) (1) (1)

0.5 13.2 7.7 4.2 2.6 1.5 1.1 1.0 1.0 1.0 1.0
(12) (12) (12) (9) (7) (7) (1) (1) (1) (1)

0.4 20.9 9.8 5.7 3.0 1.9 1.3 1.0 1.0 1.0 1.0
(14) (14) (13) (11) (9) (6) (1) (1) (1) (1)

0.3 30.9 14.8 7.9 4.2 2.4 1.5 1.0 1.0 1.0 1.0
(14) (13) (13) (13) (13) (9) (3) (1) (1) (1)

0.2 67.5 22.9 10.5 5.6 3.0 1.8 1.3 1.0 1.0 1.0
(14) (13) (14) (13) (13) (9) (6) (1) (1) (1)

0.1 80.0 41.3 15.6 8.1 3.9 2.3 1.5 1.1 1.0 1.0
(13) (13) (13) (13) (13) (10) (6) (4) (1) (1)

0 109.5 74.7 22.9 11.2 6.3 3.0 1.9 1.3 1.0 1.0
(13) (13) (13) (13) (13) (13) (6) (6) (1) (1)

-0.1 188.0 62.7 39.2 16.6 8.4 4.2 2.3 1.5 1.1 1.0
(19) (13) (13) (11) (11) (11) (7) (6) (6) (1)

-0.2 410.0 170.0 57.3 25.4 12.9 6.6 3.1 1.9 1.3 1.0
(16) (16) (13) (16) (12) (8) (10) (8) (6) (2)

-0.3 372.5 382.5 156.0 53.7 21.3 10.4 4.9 2.5 1.6 1.1
(17) (17) (12) (12) (12) (12) (10) (6) (6) (2)

-0.4 335.0 347.5 357.5 72.5 36.8 15.6 7.5 3.4 2.0 1.3
(17) (18) (14) (14) (14) (11) (10) (10) (6) (6)

-0.5 305.0 327.5 340.0 340.0 70.0 29.0 11.1 5.2 2.6 1.5
(19) (19) (19) (19) (14) (10) (10) (10) (1) (6)

-0.6 272.5 290.0 307.5 327.5 134.0 45.0 18.3 7.5 3.2 1.8
(17) (19) (20) (20) (19) (12) (12) (12) (9) (5)

-0.7 235.0 245.0 260.0 277.5 300.0 126.0 43.0 14.3 5.5 2.9
(20) (20) (20) (20) (20) (20) (12) (12) (11) (6)

-0.8 190.0 207.5 222.5 240.0 262.5 295.0 126.0 44.7 11.5 4.5
(18) (19) (18) (18) (19) (19) (19) (11) (11) (7)

-0.9 160.0 172.5 197.5 212.5 237.5 265.0 302.5 136.0 39.0 9.6
(20) (20) (20) (20) (20) (20) (20) (20) (20) (20)
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Table 10: Monte Carlo experiment for case IV. Relative size-adjusted power a =11

0.1, b = 0.1,φ = 0.95, optimal horizon in parentheses. T = 100.1

a12
ρ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0mn

0.9 8.1 5.5 3.9 2.9 2.2 1.7 1.3 1.1 1.0 1.0
(9) (9) (6) (6) (5) (5) (4) (3) (2) (1)

0.8 8.5 5.6 3.9 2.8 2.2 1.7 1.3 1.1 1.0 1.0
(10) (9) (8) (5) (5) (4) (4) (3) (1) (1)

0.7 10.0 6.6 4.4 3.1 2.2 1.7 1.4 1.1 1.0 1.0
(9) (9) (7) (7) (5) (4) (4) (3) (2) (1)

0.6 10.6 7.0 4.8 3.1 2.3 1.7 1.4 1.1 1.0 1.0
(9) (9) (7) (7) (7) (5) (4) (3) (1) (1)

0.5 11.5 7.3 5.0 3.3 2.3 1.7 1.3 1.1 1.0 1.0
(7) (7) (7) (7) (7) (7) (4) (2) (1) (1)

0.4 12.3 8.5 5.2 3.5 2.4 1.8 1.4 1.1 1.0 1.0
(9) (6) (6) (6) (6) (6) (4) (2) (1) (1)

0.3 14.3 9.2 5.7 3.9 2.5 1.8 1.4 1.1 1.0 1.0
(9) (9) (7) (7) (6) (4) (3) (3) (2) (1)

0.2 18.4 10.9 6.6 4.3 2.8 1.9 1.5 1.2 1.0 1.0
(9) (9) (6) (6) (6) (6) (3) (3) (2) (1)

0.1 22.7 11.8 7.6 4.7 3.0 2.1 1.6 1.2 1.0 1.0
(10) (7) (6) (6) (6) (6) (4) (4) (2) (1)

0 29.0 15.9 9.0 5.3 3.3 2.2 1.6 1.2 1.0 1.0
(11) (6) (6) (6) (6) (6) (5) (5) (2) (1)

-0.1 46.2 18.5 10.0 5.9 3.5 2.3 1.7 1.3 1.1 1.0
(7) (7) (6) (6) (6) (6) (6) (4) (2) (1)

-0.2 61.4 26.6 12.9 6.6 3.9 2.5 1.8 1.3 1.1 1.0
(8) (8) (8) (6) (6) (6) (6) (4) (2) (1)

-0.3 76.4 36.7 17.1 7.6 4.4 2.7 1.9 1.4 1.1 1.0
(10) (10) (6) (6) (6) (6) (6) (6) (2) (1)

-0.4 86.5 40.7 20.5 8.6 4.6 2.9 2.0 1.4 1.1 1.0
(10) (10) (6) (6) (6) (6) (6) (6) (3) (1)

-0.5 81.5 57.0 26.1 10.8 5.0 3.0 1.9 1.4 1.1 1.0
(10) (10) (10) (10) (6) (6) (6) (3) (3) (1)

-0.6 143.5 76.5 27.3 10.9 5.0 3.0 1.9 1.4 1.1 1.0
(10) (10) (10) (10) (5) (5) (5) (5) (2) (1)

-0.7 126.0 91.7 42.3 15.0 6.0 3.7 2.1 1.5 1.1 1.0
(12) (12) (10) (6) (6) (6) (6) (4) (4) (2)

-0.8 239.0 128.5 40.6 18.4 7.2 3.7 2.1 1.5 1.2 1.0
(11) (11) (11) (11) (7) (6) (4) (4) (4) (2)

-0.9 205.0 114.0 51.6 22.1 8.6 3.7 2.1 1.4 1.1 1.0
(8) (8) (8) (8) (8) (8) (8) (3) (3) (1)
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∗Table 11: Small sample properties of t test. DGP follows case 4 with a = 0.1, b =k 11 1

∗ ∗0.1,φ = 0.95, T = 200. A: Size-adjusted power of t test. B: Power of t relative tok k

∗power of t , size adjusted. C: Median k selected by t test.1 k

a12
ρ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0mn

A 0.924 0.900 0.872 0.841 0.811 0.795 0.778 0.770 0.780 0.814
0.9 B 6.716 4.918 3.594 2.704 2.100 1.690 1.392 1.194 1.069 1.004

C (9) (8) (7) (7) (6) (5) (5) (4) (3) (2)
A 0.906 0.883 0.859 0.839 0.813 0.791 0.781 0.774 0.780 0.802

0.8 B 7.739 5.256 3.774 2.838 2.223 1.748 1.441 1.221 1.099 1.006
C (10) (9) (9) (8) (7) (6) (5) (4) (3) (2)
A 0.887 0.872 0.851 0.829 0.811 0.791 0.780 0.769 0.774 0.799

0.7 B 9.636 6.137 4.210 3.088 2.394 1.845 1.506 1.276 1.124 1.032
C (11) (10) (9) (9) (8) (7) (6) (5) (4) (2)
A 0.870 0.852 0.834 0.815 0.798 0.780 0.767 0.760 0.758 0.783

0.6 B 11.219 6.927 4.712 3.396 2.477 1.886 1.525 1.294 1.128 1.034
C (12) (11) (10) (9) (8) (7) (6) (5) (4) (3)
A 0.859 0.846 0.828 0.813 0.803 0.786 0.776 0.765 0.766 0.783

0.5 B 13.422 8.546 5.274 3.635 2.668 1.984 1.571 1.312 1.157 1.042
C (13) (12) (11) (10) (9) (8) (7) (6) (5) (3)
A 0.847 0.833 0.822 0.803 0.794 0.777 0.764 0.761 0.756 0.773

0.4 B 16.608 10.605 6.157 4.215 3.000 2.154 1.643 1.344 1.173 1.069
C (14) (13) (12) (11) (10) (9) (8) (6) (5) (3)
A 0.834 0.825 0.814 0.796 0.785 0.774 0.760 0.748 0.747 0.762

0.3 B 21.372 12.791 7.903 4.854 3.324 2.385 1.752 1.380 1.182 1.076
C (14) (13) (13) (12) (11) (9) (9) (7) (6) (4)
A 0.831 0.821 0.813 0.803 0.789 0.782 0.772 0.760 0.755 0.764

0.2 B 29.679 16.918 9.909 5.858 3.728 2.614 1.923 1.462 1.225 1.092
C (15) (14) (13) (12) (11) (10) (9) (8) (6) (5)
A 0.823 0.819 0.811 0.805 0.793 0.783 0.779 0.769 0.764 0.766

0.1 B 40.146 22.135 11.746 7.026 4.204 2.842 2.055 1.521 1.278 1.095
C (15) (15) (14) (13) (12) (11) (10) (9) (7) (5)
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Table continued.
a12

ρ -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0mn

A 0.816 0.816 0.808 0.805 0.797 0.786 0.778 0.778 0.773 0.773
0.0 B 58.250 26.738 14.691 8.209 4.875 3.111 2.199 1.603 1.317 1.118

C (16) (15) (14) (14) (13) (12) (11) (9) (8) (6)
A 0.803 0.806 0.806 0.799 0.795 0.794 0.783 0.780 0.780 0.781

-0.1 B 123.539 46.057 20.405 11.333 6.256 3.772 2.490 1.752 1.393 1.161
C (16) (16) (15) (14) (14) (13) (12) (10) (9) (7)
A 0.792 0.795 0.797 0.798 0.793 0.793 0.792 0.784 0.783 0.793

-0.2 B 176.000 75.714 31.255 15.792 7.847 4.594 2.917 1.994 1.458 1.225
C (17) (16) (16) (15) (14) (13) (12) (11) (10) (8)
A 0.777 0.780 0.784 0.786 0.790 0.782 0.787 0.787 0.782 0.789

-0.3 B 259.000 111.357 50.548 20.684 9.869 5.353 3.197 2.107 1.523 1.222
C (17) (17) (16) (15) (15) (14) (13) (12) (11) (9)
A 0.781 0.786 0.788 0.798 0.800 0.803 0.802 0.804 0.813 0.813

-0.4 B 390.250 224.429 78.800 33.957 12.903 6.744 3.893 2.332 1.660 1.278
C (17) (17) (16) (16) (15) (15) (14) (13) (12) (10)
A 0.776 0.789 0.797 0.805 0.812 0.815 0.819 0.824 0.828 0.835

-0.5 B 517.333 394.250 113.857 46.000 18.443 8.269 4.356 2.554 1.723 1.319
C (18) (17) (17) (17) (16) (15) (14) (14) (12) (11)
A 0.787 0.806 0.821 0.829 0.840 0.854 0.861 0.866 0.874 0.876

-0.6 B 524.667 537.333 273.500 75.364 29.474 11.612 5.502 2.961 1.919 1.395
C (18) (17) (17) (17) (16) (16) (15) (14) (13) (12)
A 0.795 0.813 0.834 0.851 0.866 0.886 0.895 0.905 0.918 0.919

-0.7 B 795.000 542.000 417.000 141.833 41.238 16.109 6.832 3.448 2.073 1.428
C (18) (18) (17) (17) (17) (17) (16) (15) (14) (13)
A 0.788 0.819 0.840 0.864 0.885 0.900 0.918 0.930 0.944 0.954

-0.8 B 788.000 545.667 420.000 287.833 68.039 22.210 8.308 3.788 2.129 1.425
C (18) (18) (18) (18) (17) (17) (17) (16) (15) (15)
A 0.775 0.816 0.847 0.875 0.900 0.925 0.947 0.962 0.973 0.981

-0.9 B 775.000 815.500 564.667 249.857 112.500 32.439 11.473 4.495 2.190 1.369
C (18) (18) (18) (18) (17) (18) (17) (17) (17) (16)
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Figure 1: Relative asymptotic power for Berben�s (2000) case.
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Figure 2: Relative asymptotic power x = φx + v , e = µ e + µ e + m .t t−1 t t 1 t−1 2 t−2 t

Clockwise from upper left, φ = 0.98, 0.88, 0.68, 0.78
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Figure 3: Relative asymptotic power x = φ x + φ x + v , e = µe + m .t 1 t−1 2 t−2 t t t−1 t

Clockwise from upper left, µ = −0.62,−0.72,−0.92,−0.82.
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Figure 4: β (T )/β (T ) under endogeneity and exogeneity. a = 0.5, a =k 1 11 12

−0.1, ρ = −0.1, b = 0.1,φ = 0.90.mn 1
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Appendix

Derivation of eq.(3). Begin with Assumption 1, use the projection representation for
x and advance the time subscript in (2) to obtain ∆y = β (T )x + e =t+1 t+2 1 t+1 t+2

β (T )ρ (x)x + e + β (T )u . Add this result to (2) get for k = 2,1 1 t t+2 1 t+1,1

y − y = β (T ) [1+ ρ (x)] x + (e + e + β (T )u )t+2 t 1 1 t t+1 t+2 1 t+1,1

Continuing on for arbitrary k > 1 gives (3).

2 2� �Derivation of eqs. (5)�(7) The asymptotic variance of β is V (β ) =W /(E(x ) ) =k k k tP∞2W /C (x), whereW = Ω +2 Ω , andΩ = lim E (x x ² ² ).k k 0,k j,k jk T→∞ t−k t−k−j t,k t−k−j,k0 j=1

Since ² is asymptotically independent of u , it follows thatt,k t+j,j

Ω = lim E (x x ² ² )jk t−k t−k−j t,k t−k−j,k
T→∞ Ã !

k−1 k−1X X
= E (x x ) E e et−k t−k−j t−j t−j−s

s=0 s=0

= C (x)G (e)j j,k

where Ã !
k−1 k−1 k−1X X X

G (e) ≡ E e e = kC (e) + (k − s) [C (e) + C (e)]j,k t−j t−j−s j j−s j+s
s=0 s=0 s=1

P j∞−1 j −1Derivation of (28). Let a (L) ≡ (1−a L) = a L and φ(L) ≡ (1−φL) =11 11 11j=0P∞ j jφ L . From (26)-(27) we obtain,j=0

e = a (T )a (L)v + a (L)mt+1 12 11 t 11 t+1

x = φ(L)v .t t

It follows that

E(e x ) = E ([a (T )a (L)v + a (L)m ] [φ(L)v ])t+1 t 12 11 t 11 t+1 t

a (T ) + a ρ (T ) a + a ρ12 11 mn 12 11 mn√= =
1− a φ (1− a φ) T11 11

p
We have determined that β (T )→ b (T ) + c (T ) where1 1 1

³ ´E(e x ) (a + a ρ ) 1t+1 t 12 11 mn 2√c (T ) = = 1− φ1 2E(x ) (1− a φ) Tt 11

37



Derivation of (30) Note that for k = 2,

y − y = b (T )(1+ φ)x + at+2 t 1 t t+2,2

a = e + e + β (T )vt+2,2 t+2 t+1 1 t+1

b1√Therefore, b (T ) = b (T )(1+ φ) = (1+ φ). As before, we can write2 1 T

2e = a (T )v + a (T )a a (L)v +m + a m + a a (L)mt+2 12 t+1 12 11 11 t t+2 11 t+1 11 t11

x = φ(L)vt t

from which we obtain,

2a (T ) a ρ (T ) a a (a + ρ a )12 11 mn 11 11 12 mn 11√E(e x ) = + = = a E(e x )t+2 t 11 t+1 t
1− a φ 1− a φ (1− a φ) T11 11 11

It follows that Ã !
a + ρ a12 mn 11√E[a x ] = E[(e + e )x ] = (1+ a ) = c (T )t+2,2 t t+2 t+1 t 11 2
(1− a φ) T11 ³ ´Pk−1 jContinuing on in this way, it can be seen that for any k, b (T ) = b (T ) φ =k 1 j=0³ ´

k1−φb (T ) , and1 1−φ  Ã ! Ã !Ã !
k−1 kXa + ρ a a + ρ a 1− a12 mn 11 12 mn 11j 11 √ √E (² x ) = a =t+k,k t 11 1− a(1− a φ) T (1− a φ) T 1111 11j=0

−12 2Finally, divide by E (x ) = C (x) = (1− φ ) to get0t Ã !Ã !
k ³ ´a + ρ a 1− a12 mn 11 11 2√c (T ) = 1− φk

1− a(1− a φ) T 1111
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