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Abstract

In a long-horizon regression, a k−period future return is regressed on a cur-
rent variable such as the log dividend yield. The p-value of the t-test that the

return is unpredictable typically declines over some range of return horizons, k.

Local asymptotic analysis shows that the power of the long-horizon regression test

dominates that of the short-horizon test over a nontrivial region of the admissible

parameter space. However, OLS is biased in small samples and this bias distorts

the size of asymptotic tests. We correct for test-size distortion with a recursive

moving-block Bartlett correction. Application of the the Bartlett corrected test to

historical equity returns yield evidence that the log dividend yield predicts returns

at the 13 year horizon.
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1 Introduction

Let rt ∼ I(0) be the return on an asset or a portfolio of assets from time t−1 to t and xt
be a persistent hypothesized predictor of the asset’s future returns. In finance rt might

be the return on equity and xt the log dividend yield whereas in international finance

rt might be the return on the log exchange rate and xt the deviation of the exchange

rate from its fundamental value.1 A test of return predictability can be conducted by

regressing rt+1 on xt and performing a t-test on the slope coefficient. Empirical research

in finance frequently goes beyond this by regressing the asset’s multi-period future return

yt,k =
Pk

j=1 rt+j on xt,

yt,k = µk + βkxt + �t,k, (1)

and conducting a t-test of the null hypothesis H0 : βk = 0, where the t-statistic is

constructed with a heteroskedastic and autocorrelation consistent (HAC) standard error.

It is typically found that OLS slope estimates, asymptotic t-ratios, and R2s increase over

a range of horizons k > 1. Are the t-ratios increasing because the long-horizon test has

more power to reject the null than the short-horizon test? Considering that the long-

horizon regression is built by aggregation of intervening short-horizon regressions, the

underlying basis for these results are not fully understood. As stated by Campbell et

al. (1997), “An important unresolved question is whether there are circumstances under

which long-horizon regressions have greater power to detect deviations from the null

hypothesis than do short-horizon regressions.”

In this paper, we address the power question posed by Campbell et al. We conduct

the asymptotic power analysis both under the assumption that the regressor is covari-

ance stationary and, because predictive variables used in empirical work are often very

persistent, under the assumption that the regressor has a local-to-unity dominant au-

toregressive root. Under stationarity, testing is straightforward and can be done with

the t-test. In the local-to-unity case, we approach testing with a variant of the sup-

bound test discussed by Cavanaugh et al. (1995) and employ the sup—t2 test which is

asymptotically free from nuisance parameter dependencies.

1This line of research includes Fama and French (1988a) and Campbell and Shiller (1988) who
regressed long-horizon equity returns on the log dividend yield. See also Mishkin (1992), who ran

regressions of long-horizon inflation on long-term bond yields, Coe and Nason (2004) who regress
long-horizon GDP growth on long-horizon money growth, Mark (1995), Mark and Choi (1997), Chinn
and Meese (1995) and Rapach and Wohar (2002) who regressed long-horizon exchange rate returns
on the deviation of the exchange rate from its fundamental value, Alexius (2001) and Chinn and
Merideth (2002) who regress long-horizon exchange rate returns on long-term bond yield differentials.
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Whether the regressor is stationary or is local-to-unity, we show that asymptotic

power advantages can accrue to long-horizon regression tests in empirically relevant re-

gions of the parameter space–specifically when {xt} is positively autocorrelated and
persistent, when the short-horizon regression error exhibits low to moderate serial cor-

relation, and when the regressor is endogenous.

While our asymptotic analysis answers the power question posed above in the affirma-

tive, direct application of the asymptotic tests in small samples can result in misleading

inference because they exhibit some size distortion. The cause of the size distortion

is the (well-known) small sample OLS bias from the predictive regression [Stambaugh

(1999)]. We confront the size-distortion issue by suggesting a recursive moving-block

(RMB) Bartlett correction to the test statistic. The RMB Bartlett correction is a ro-

bust procedure that also preserves the power advantages for long-horizon tests.

Previous research on the econometrics of predictive regressions include Campbell (2001)

who assumes an AR(1) regressor {xt} and a serially uncorrelated short-horizon regres-
sion error. Using the concept of approximate slope to measure its asymptotic power, he

found that long-horizon regressions had approximate slope advantages over short-horizon

regressions but his Monte Carlo experiments did not reveal systematic power advantages

for long-horizon regressions in finite samples. Berben (2000) reported asymptotic power

advantages for long-horizon regression when the exogenous predictor and the short-

horizon regression error follow AR(1) processes whereas Berben and Van Dijk (1998)

conclude that long-horizon tests do not have asymptotic power advantages when the re-

gressor is unit-root nonstationary and is weakly exogenous–properties that Berkowitz

and Giorgianni (2001) also find in simulation work. Mankiw and Shapiro (1986), Ho-

drick (1992), Kim and Nelson (1993), Goetzmann and Jorion (1993), Mark (1995),

Kilian (1999), and Kilian and Taylor (2003) study small-sample inference issues us-

ing simulation methods. Stambaugh (1999) proposes a Bayesian analysis to deal with

small-sample OLS bias and Campbell and Yogo (2002) study point optimal tests in the

short-horizon predictive regression. Clark and McCracken (2001), Bhansali (1997), and

Ing (2003) study the predictive power of long-horizon out-of-sample forecasts.

The long-horizon predictive regressions that we study regress returns at alternative

horizons on the same explanatory variable. The regressions admit variations in k but the

horizon is implicitly constrained to be small relative to the sample size in the sense that

k/T → 0 as T →∞. An alternative long-horizon regression employed in the literature
regresses the future k-period return (from t to t+ k) on the past k-period return (from

t − k to t) [Fama and French (1988b)]. In this alternative long-horizon regression, the

3



return horizon k can be large relative to the size of the sample T . Richardson and

Stock (1989) develop an alternative asymptotic theory where k → ∞ and T → ∞ but

k/T → κ ∈ (0, 1) and show that the test statistics converge to functions of Brownian
motions. Daniel (2001) studies optimal tests of this kind, Kim et al. (1991) study

the OLS sampling distribution with the bootstrap and randomization techniques, and

Valkanov (2003) employs the Richardson and Stock asymptotic distribution theory to

the long-horizon regressions when the regressor xt follows a local-to-unity process.

The paper is organized as follows. To set the stage for our inquiry, the next sec-

tion presents the canonical example of the use of long-horizon predictive regressions in

finance—that of regressing future equity returns on the log dividend yield. Section 3

presents the local asymptotic power analysis and Section 4 discusses the RMB Bartlett

correction of the test statistic. Results of simulation work to characterize the small sam-

ple properties of the long-horizon tests are presented in Section 5. Section 6 applies the

RMB Bartlett corrected sup—t2 test to test whether stock returns are predictable and

Section 7 concludes. Proofs of the main results are contained in the appendix.

2 Canonical example

To motivate the issues, we revisit the question of whether the log dividend yield predicts

future stock returns [Fama and French (1988b), Campbell and Shiller (1988)]. The

predictive regression can be motivated as in Campbell et al. (1997) who show how the

log dividend yield is the expected present value of future returns net of future dividend

growth. If forecasts of future dividend growth are relatively smooth, this present-value

relation suggests that the log dividend yield contains information useful for predicting

future returns.

Let rt+1 = ln ((Pt+1 +Dt+1) /Pt) and xt = ln (Dt/Pt) , where Pt is the beginning of

year price of the S&P index and Dt is the annual flow of dividends in year t. We use

annual observations from 1871 to 2002 and regress future returns at horizons of 1,5,10,

and 15 years on xt.2 The results are shown in Table 1.

2These data were used in Robert J. Shiller (2000) and were obtained from his web site. Annual
observations were constructed from these monthly data. Because the dependent variable changes with

k, the R2s are not directly comparable across horizons.
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Table 1: Short and long-horizon equity
return regressions

k = 1 k = 5 k = 10 k = 15bβk 0.072 0.250 0.716 1.206

tβ (k) 1.330 1.194 2.499 4.965

R2 0.02 0.05 0.15 0.29

The OLS point estimates of the slope, conventional asymptotic t-ratios, and regres-

sion R2s increase with return horizon which suggests that evidence for return predictabil-

ity strengthens as the return horizon is lengthened. The conventional t-test cannot reject

the null of no predictability at k = 1 or 5 but does reject at k = 10 and 15. The pattern

exhibited between the point estimates and horizon is quite familiar in the literature and

has come to be viewed as a stylized fact. To explain these features of the data, Campbell

and Cochrane (1999) propose an asset pricing model in which the representative agent’s

preferences display habit persistence while Cecchetti et al. (2000) present a model in

which the representative agent’s beliefs are distorted.

How persistent is the regressor? The log dividend yield (the regressor) has a first-

ordered autocorrelation of 0.843. Testing for a unit root in {xt} yields augmented

Dickey—Fuller (ADF) test statistic values of -0.189 (with constant) and -1.106 (constant

and trend) and Phillips—Perron (PP) test statistics of —0.850 (constant) and —2.01 (con-

stant and trend).3 The apparent nonstationarity of the dividend yield is driven in large

part by the bull market of the late 1990s. When we end the sample in 1997, however, the

ADF statistics become -2.965 (constant) and -3.758 (constant and trend). Correspond-

ing PP-statistics are -2.640 (constant) and -3.656 (constant and trend). In summary,

the log-dividend yield appears to be borderline stationary.

3 Local asymptotic power

We study local asymptotic power from two perspectives. First, we assume that both the

return sequence {yt} and the dividend-yield {xt} are covariance stationary. Although
regressors used in practice are often persistent, the I(0) assumption turns out not to be

3Approximate critical values for the test (with constant) are -2.86, -2.86, and -2.89, respectively at
the 5% level and -2.57, -2.57, and -2.58, respectively at the 10% level. Approximate critical values for
the test (constant and trend) are -3.41, -3.43, and -3.45 respectively at the 5% level and -3.12, -3.13,
and -3.15 respectively at the 10% level.
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restrictive because the results that we obtain under stationarity can be applied directly in

cases where the regressor follows a weak unit-root process in the sense of Park (2003a,

2006). But because weakly integrated time series are not widely discussed, we also

study local asymptotic power under the more familiar assumption that the regressor has

a local-to-unity autoregressive root.

Before proceeding with our analysis, however, we briefly discuss related work by

Bhansali (1997) and Ing (2003) whose findings of long-horizon forecasting dominance

under misspecification is similar in spirit to our findings. These authors compare predic-

tive accuracy between direct (long-horizon) and plug-in (short-horizon) forecasts from an

estimated AR(1) regression of a univariate series ARI(p, d) series. The direct k−period
ahead forecast comes from the k−period regression x̂dt+k|t = ρ̂kxt where ρ̂k is the

point estimate from the regression of xt+k on xt whereas the iterative plug-in forecast is

x̂pt+k = ρ̂k1xt, where ρ̂1 is the point estimate from regressing xt+1 on xt. x̂dt+k|t is the ana-
log to the long-horizon predictor and x̂pt+k|t is the analog to the short-horizon forecast.

In the stationary case, Bhansali (1997) showed that the long-horizon forecasts dominate

the short-horizon forecasts in asymptotic mean-square error under misspecification of

the AR(1) regression (i.e., when the truth is p > 1 and d = 0). Not surprisingly, he finds

that the forecasts are asymptotically equivalent when the AR(1) is correctly specified.

Ing (2003) obtains a similar asymptotic equivalence result under correct specification in

the nonstationary case (p = 1 and d = 1). The lesson from these studies is if the long-

horizon prediction tests that we study are to have asymptotic power advantages over

short-horizon tests, it must occur under endogeneity of the regressor (misspecification in

our context). Thus a key issue is whether there is any correlation between the regressor

and the regression error.

To set notation, we will work with predictive regressions of the form

rt+1 = µr + β1xt + et+1.

In the stationary case, we will suppress the regression constant since it has no ef-

fect on the asymptotic properties of the predictive regression tests. We will, however,

reintroduce the constant in the local-to-unity analysis and in the simulation work on

the small sample properties of the tests. Economic theory typically provides guidance

on the appropriate sign of the slope coefficient under the alternative. Throughout the

paper, we restrict out attention to the one-sided alternative for which β1 > 0.
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3.1 Local asymptotic power under a covariance stationary regressor

For our local asymptotic analysis under covariance stationarity, the observations will be

generated according to

Assumption 1 (Covariance stationarity) For sample size T, the observations have the
representation

rt+1 = β1(T )xt + et+1, (2)

xt+1 = ρxt + ut+1, (3)

where −1 < ρ < 1 and {et+1} and {ut+1} are zero mean covariance stationary sequences.
β1(T ) = b/

√
T and c(T ) = c/

√
T = E

³PT
t=1 xtet+1

´³PT
t=1 x

2
t

´−1
give the sequence of

local alternatives where b and c are constants.

We note that the endogeneity of the regressor, characterized by c (T ) , is local-to-zero.

The long-horizon regression (k > 1) obtained by addition of short-horizon regressions is

yt,k =
kX

j=1

rt+j = βk(T )xt + �t,k,

where

βk(T ) = β1(T )

"
1 +

k−1X
j=1

ρj

#
=

b√
T

µ
1− ρk

1− ρ

¶
,

�t,k =
kX

j=1

et+j + β1(T )

Ã
k−1X
j=1

ut+j

!
. (4)

Under the sequence of local alternatives, the OLS estimator at horizon k > 1 has

probability limit (bk + ck) /
√
T , where ck(T ) = ck/

√
T = E

³PT
t=1 xt�t,k

´³PT
t=1 x

2
t

´−1
and bk (T ) = bk/

√
T =

³
b/
√
T
´ ¡
1− ρk

¢
(1− ρ)−1 . Because the direct dependence of �t,k

on the projection errors ut+j vanish asymptotically, the asymptotic variance of the OLS

estimator may be calculated under the null hypothesis of no predictability (ck = bk = 0,

k > 0). Under the sequence of local alternatives, the squared t-ratio for the test of the

null hypothesis H0 : βk = 0 has the asymptotic noncentral chi-square distribution,

t2β (k) =
Tβ̂

2

k

V (β̂k)

D→ χ21(λk),
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with noncentrality parameter,

λk =
(bk + ck)

2

V (β̂k)
.

The long-horizon test will have more power than the short-horizon test if the noncentral-

ity parameter for horizon k exceeds the noncentrality parameter for horizon 1. To make

the dependence of local asymptotic power on the DGP’s parameter values explicit, we

let γ be the parameter vector that characterizes the DGP and let θ(k, γ) = λk/λ1 be the

measure of relative local asymptotic power between long-and short-horizon regression.

We can now state

Proposition 1 Under Assumption 1, the long-horizon (k > 1) regression test of the

hypothesis that xt does not predict future rt has asymptotic local power advantage over

the short-horizon (k = 1) regression test if

θ(k, γ) =
λk
λ1
= plim

T→∞

"
β̂k

β̂1

#2 "
V (β̂1)

V (β̂k)

#
=

∙
bk + ck
b+ c

¸2 ∙
Ωee

Ω��(k)

¸
> 1,

where Ωee and Ω��(k) are the long run variances of et+1 in (2) and �t,k in (4), respectively.

Exogenous regressor If the regressor is exogenous, then the power advantage condition

of proposition 1 becomes

θ(k, γ) =
λk
λ1
=

∙
1− ρk

1− ρ

¸2 ∙
Ωee

Ω��(k)

¸
> 1.

There obviously will be no power advantages to long horizon regression tests if {et} is
iid and if there is no persistence in the regressor (ρ = 0) since in this case, Ω��(k)

−1Ωee =

1/k. When the regressor is persistent, βk(T )/β1(T ) =
Pk−1

j=0 ρ
j =

¡
1− ρk

¢
/ (1− ρ) is

increasing in k and approaches k as ρ approaches unity. Under the null, however, when

et is either uncorrelated or is positively serially correlated, Ω��(k) also increases with

k at a rate at least as great. Thus, it seems that power advantages will generally be

unavailable to long-horizon regression tests when the regressor is exogenous.

Endogenous regressor Local asymptotic power advantages can accrue to long-horizon

regression tests when the regressor is endogenous. To see why endogeneity of this sort

may arise in applications, we consult the equity return example. When future equity

returns rt+1 = ln(Pt+1 +Dt)− lnPt are regressed on xt = lnDt−1 − lnPt, both rt+1 and
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xt+1 depend on lnPt+1. It would not be surprising therefore, to find that the regression

error and the innovation to xt are negatively correlated, E(ut+1et+1) < 0.4

The endogeneity can also be seen from with a parametric example with a slight

reformulation of the dependent variable. Using an approximation from Campbell et al.

(1997), let yt be the log stock price, zt be the log dividend and xt = zt − yt be the

log dividend yield. Then rt+1 ' Φ∆yt+1 + (1− Φ)xt where Φ is the implied discount

factor when the discount rate is the average dividend yield. Suppose that the bivariate

sequence {(yt, zt)0} can be represented as a first-order VECM with cointegration vector

(−1, 1), Ã
∆yt

∆zt

!
=

Ã
h1xt−1
h2xt−1

!
+

Ã
w11 w12

w21 w22

!Ã
∆yt−1
∆zt−1

!
+

Ã
�t

vt

!
, (5)

where the equilibrium error is xt = zt − yt. Eq.(5) has an equivalent restricted vector

autoregressive (VAR) representation for (∆yt, xt) where {xt} and {∆yt} are correlated
both contemporaneously and dynamically (at leads and lags).5 The first equation of the

VAR representation gives the short-horizon regression

rt+1 = (1 + Φ ((h1 + w12 − 1))xt + et+1, (6)

with slope coefficient is (1 + Φ ((h1 + w12 − 1)) and regression error

et+1 = Φ [(w11 + w12)∆yt − w12xt−1 + �t+1] ,

which is serially correlated and also correlated with xt. The objective of the short-

horizon regression is not to estimate (1 + Φ ((h1 + w12 − 1)) per se, but to estimate
the projection coefficient of ∆yt+1 on xt which includes the correlation between the re-

gressor xt and (∆yt, xt−1) in the error term. A researcher presumably would use the

predictive regression instead of estimating a complete specification of the dynamic cor-

relation structure between ∆yt+1 and xt for the same reason that (s)he would use a HAC

4The predicted negative innovation correlation are in fact present in the data. Fitting a first-order
vector autoregression to (et, vt)0, we obtain an innovation correlation of -0.948 for stocks and -0.786 for
exchange rates.

5The VAR representation isÃ
∆yt

xt

!
=

Ã
(w11 + w12) (h1 + w12)

(w22 − w12 + w21 − w11) (1 + h2 − h1 + w22 − w12)

!Ã
∆yt−1
xt−1

!

+

Ã
0 −w12
0 (w12 − w22)

!Ã
∆yt−2
xt−2

!
+

Ã
�t

vt − �t

!
.
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covariance estimator to avoid explicitly modeling the serial correlation and conditional

heteroskedasticity of the regression error.

Next, we use a simple parametric example to show how the long-horizon test can

have substantial local asymptotic power advantages. From proposition 1, long-horizon

power advantages require
¡
b
¡
1− ρk

¢
(1− ρ)−1 + ck

¢2
to increase with k at a faster rate

than Ω��(k). The power advantage will be substantial if c < 0 such that b + c ' 0 and
bk + ck > 0 is increasing in k for k > 1. We won’t use the VECM example because it

presents a fixed alternative instead of a sequence of local alternatives. Also, the VECM

becomes quite cumbersome due to its heavy parameterization. Instead, we consider an

environment where

et = a11et−1 + a12 (T )ut−1 +mt,

ut = nt,

where (mt, nt)
0 iid∼ [0, φ(T )] , φmm = φnn = 1, φmn(T ) = φmn/

√
T , b(T ) = b/

√
T , a12(T ) =

a12/
√
T . Then local-to-zero endogeneity is characterized by

c(T ) =
E(et+1xt)

E(xt)2
=

µ
a12 + a11φmn√
T (1− a11ρ)

¶¡
1− ρ2

¢
,

with c =
£
(a12 + a11φmn) (1− a11ρ)

−1¤ (1− ρ2) , and ck = c
¡
1− ak11

¢
(1− a11)

−1.
Figure 1 plots [(bk + ck)/(b+ c)]2 for various values of the DGP’s parameter vector γ.

As can be seen from the figure, [(bk + ck) / (b+ c)]2 increases at a rate much greater than

k which results in local asymptotic power advantages for the long-horizon regression test

over a substantial portion of the parameter space.
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mn  −0. 9

mn  −0. 5

mn  −0. 3

bkck
bc

2

Figure 1. Plots of [(bk + ck) / (b+ c)]2 for parameter values

(a11, a12, b, ρ) = (0.1,−0.6, 0.1, 0.95) . φmn = −0.9,−0.5,−0.3
gives c = −0.074,−0.070,−0.068.

3.2 Local asymptotic power under a weak unit-root regressor

Our results for covariance stationary regressors can be applied to cases of persistent

regressors that are weakly integrated in the sense of Park (2003a, 2006). These are

series where ρ (T ) = 1 + ρ/Tα, ρ < 0 and α < 1 ({xt} is local-to-unity if α = 1).

The essential difference between the local-to-unity and weakly integrated processes lies

in their limit distributions. The weak unit-root process is normally distributed with

convergence rate Tα while, the limiting distribution of {xt} with α = 1 is a function

of Ornstein-Uhlenbeck processes. Hence as long as α < 1, Proposition 1 continues to

apply.

3.3 Local asymptotic power under a local-to-unity regressor

For our local asymptotic analysis under a local-to-unity regressor, the observations will

be generated according to
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Assumption 2 (Local-to-unity autoregressive root.) For sample size T, the observations
have the representation,

rt+1 = µr + β1(T )xt + et+1, (7)

xt+1 = µx + ρ(T )xt + ut+1, (8)

where {et+1} and {ut+1} are zero mean covariance stationary sequences. ρ(T ) = 1+α/T
and β1(T ) = b/T give the sequence of local alternatives where α and b are constants. For

the long-horizon regression, the sequence of local alternatives at horizon k is βk(T ) =

(kb)/T.

We will also require the following notation. ‘Tildes’ will refer to demeaned variables

so that ext = xt − T−1
PT

t=1 xt. Let ξt = (∆x0t, e
0
t)
0 and Ω = Σ + Λ+ Λ0 be it’s long-run

covariance matrix,

Ω = lim
T→∞

1

T

TX
t=1

∞X
l=−∞

E(ξtξ
0
t−l) =

Ã
Ωxx Ωxe

Ωex Ωee

!
,

whereΣ = lim
T−→∞

PT
t=1E(ξtξ

0
t) =

Ã
Σxx Σxe

Σex Σee

!
, andΛ = lim

T−→∞
1
T

PT
t=1

Pt−1
l=1 E(ξt−lξ

0
t) =Ã

Λxx Λxe

Λex Λee

!
. Next, let B1 be a scaler Brownian motion with long run variance Ωxx,

J be the diffusion process defined by dJ(r) = αJ(r) + dB1(r), with initial condition

J(0) = 0, and eJ = J(r) − R 1
0
J(r)dr. The slope coefficient from the k−horizon regres-

sion is β̂k = (
P

t ext∆eyt+k) (Pex2t )−1 with asymptotic t-ratio tβ(k) = β̂k/
q
V (β̂k), where

V (β̂k) = bΩee (
P

t x̃
2
t )
−1. Then following Phillips (1988) and Cavanagh, Elliot and Stock

(1995), we have

Proposition 2 (Local-to-unity asymptotic distribution) Under Assumption 2, the OLS
estimator of the k−th horizon regression slope coefficient is asymptotically distributed
as,

Tβ̂k =⇒ kG+ k
Ck

Ωxx

µZ
J̃2
¶−1

+ kb, (9)

and its corresponding t−statistic has asymptotic distribution,

tβ(k) =⇒ δτ 1c +
¡
1− δ2

¢1/2
N(0, 1) +

Ck√
ΩxxΩee

µZ
J̃2
¶−1/2

+ bR

µZ
J̃2
¶1/2

, (10)

12



where G = R

½
δ
³R

J̃2
´−1 R

J̃dB1 +
¡
1− δ2

¢1/2 ³R
J̃2
´−1 R

J̃dB∗2

¾
, R = Ω

1/2
xx Ω

−1/2
ee ,

δ = Ωxe (ΩxxΩee)
−1/2 , Ck = Λxe−Λxe,k−1, Λxe,k−1 = limT→∞ 1

T
1
k

Pk
s=2

PT
t=k−1

Ps−1
l=1E(∆xt−let)

for k > 1, Λxe,0 = 0, τ 1c =
³R

J̃2
´−1/2 R

J̃dB1,B2 = δB1 + (1 − δ2)1/2B∗2 , and B∗2 is a
standard Brownian motion distributed independently of B1.

3.3.1 Contrasting asymptotic analysis under stationarity and local-to-unity.

Whereas in the stationary case the endogeneity is not random, it is useful to note here

that both the local-to-unity parameter α, the local endogeneity parameter ck are random.

As a result, under the local-to-unity assumption, it is not necessary to explicitly model

the local to zero endogeneity in Assumption 2. To understand the randomness in ck in

the local-to-unity case, denote the endogeneity between xt and et+k as ck(T ) = ck/T =

(
P

t x̃t�̃t,k) (
P

t x̃
2
t )
−1

. Then using Proposition 2, the limit distribution of ck is

T (ck − kc) = T
³
β̂k − βk (T )

´
= T

³
β̂k − kb

´
⇒ kG+ k

Λxe − Λxe,k−1
Ωxx

µZ
J̃2
¶−1

.

As can be seen, the limit distribution of ck is random even under exogeneity (c = 0),

which is quite different from the stationary case.

3.3.2 Exogenous local-to-unity regressor

Campbell and Yogo (2002) and Valkanov (2003) study predictive regressions where the

local-to-unity regressor is exogenous. In this case, Λxe = Λxe,k−1 = 0 gives

tβ(k) =⇒ δτ 1c +
¡
1− δ2

¢1/2
N(0, 1) + bR

µZ
J̃2
¶1/2

,

which does not depend on k. Thus it follows that the long-horizon regression test has no

asymptotic power advantages over the short horizon test when the regressor is exogenous.

3.3.3 Endogenous local-to-unity regressor

By (10), the limiting behavior of the difference between t−statistics at horizons k and
horizon 1 is

taβ(k)− taβ(1)⇒ −
³
Λxe,k−1/

p
ΩxxΩee

´µZ
J̃2
¶−1/2

.
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For a one-tail test with βk > 0 under the alternative, taβ(k) will be increasing in k if

innovations to the regressor and the regression error are negatively correlated in the

sense that Λxe,k−1 < 0. Thus, we can say that under Assumption 2, asymptotic power

advantages will accrue to long-horizon regression tests if

Λxe,k−1 < 0 for k > 1. (11)

A significant point to emphasize about (11) is the long-run nature of the endogeneity

that gives rise to long-horizon power advantages. In other words, long-horizon power

is obtained not just from correlation between ∆xt−1 and et but from cross correlation

between any lagged ∆xt−l and et.

3.3.4 Practical considerations for hypothesis testing

While we’ve seen that asymptotic power advantages can accrue to long-horizon regres-

sions, the conventional t-test should not be used in practice. Under a local-to-unity

regressor, the t-statistic depends on the regressor’s local-to-unity parameter α, which

cannot be consistently estimated from the time-series. For practical considerations, we

approach testing using a variant of the sup-bound test discussed by Cavanaugh et al.

(1995), which is an asymptotically valid test of predictability that does not depend on

the nuisance parameter α. We use the squared t-ratio which allows two-sided tests. We

refer to this as the sup—t2 test.

To construct the test for given δ = Ωxe (ΩxxΩee)
−1/2 , let qtβ ,α,η be the 100η per-

centile of the distribution of δ2τ 21c +
¡
1− δ2

¢
N(0, 1)2. Under the null, t2β(k)

L→ δ2τ 21c +¡
1− δ2

¢
N(0, 1)2. It follows that the most conservative sup—t2 test with at most asymp-

totic level η is obtained by rejecting the null if t2β(k) > qtβ ,0,η. On the other hand, if

α =α¿ 0, then t2β(k)
L→ N(0, 1)2 = χ21 from which it follows that the most liberal

test is obtained by rejecting the null if t2β(k) > qtβ ,α,η, which is also equivalent to the

conventional asymptotic chi-square test under stationarity of the regressor. Figure 2

displays the asymptotic critical values for the most conservative and the most liberal

sup—t2 tests.
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Figure 2. Critical values of asymptotic sup—t2 test.

The direct application of the sup—t2 test in small samples, however, may lead to mis-

leading inference. The problem arises due to the well-known small-sample OLS bias in bβk
from the predictive regression.6 This bias causes the asymptotic sup—t2 test to be some-

what oversized at long horizons. Because direct size adjustments to the test statistic is

not straightforward when the DGP is unknown, we discuss the RMB Bartlett correction

for the test which is a nonparametric and robust resampling adjustment strategy.

4 Recursive moving block Bartlett correction for the sup
t2 test

In unit-root tests, Johansson (2004) and Nielson (1997) show that the Bartlett correction

is very accurate for the likelihood ratio test while Larsson (1998) finds that the Bartlett

correction of the t2 test is highly accurate. The successful application of the Bartlett

correction in the unit root context suggests that it will provide accurate adjustments in

the local-to-unity context that we consider. Following Cribari et al. (1995), who obtained

asymptotic expansions of test statistics for stationary processes and Park (2003b) who

obtains asymptotic expansions of test statistics for unit-root processes, we obtain the

6See Stambaugh (1999) for the short-horizon OLS bias formula, Mark and Sul (2004) for long-
horizon OLS bias formulae, and Kim and Nelson (1993) who estimate the bias for stock returns using
randomization methods .
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asymptotic expansion of the squared t-ratio7

W =WT − a1
T
WT − a2

T
W 2

T +Op

¡
T−2

¢
, (12)

where WT is the squared t-statistic computed from a sample of size T, W is its ‘true’

value, and a1 and a2 are ‘Bartlett coefficients’ which are derived from the asymptotic

expansion of the statistic.

In a conventional Bartlett correction, one uses knowledge of the asymptotic DGP

to calculate the Bartlett coefficients in the correction. In contrast to the conventional

Bartlett correction, here we propose that one estimates the Bartlett coefficients a1 and

a2 from the data. Since our strategy does not require precise knowledge of the underlying

DGP, it is a robust procedure.

To apply the RMB Bartlett correction, proceed as follows. Construct a moving-block

sample of size B from the original set of observations, {ξ1, · · · , ξB} ,
©
ξ2, · · · , ξB+1

ª
,

· · · , ©ξT1−B+1, · · · , ξT1ª . Using the data from each block, construct the sup-t2 statistic,
WB,j = t2β, j = 1, ..., T1 −B + 1. From each block, form the analog to (12),

BW = −a1WB,j − a2W
2
B,j +BWB,j.

Taking the average over j gives

BW = −a1E∗B (W )− a2E
∗
B

¡
W 2
¢
+BE∗B (W ) ,

where E∗B (W ) =
1

T1−B+1
PT1−k+1

j=1 WB,j and E∗B (W
2) = 1

T1−B+1
PT1−k+1

j=1 W 2
B,j. Repeat

using block size B+1, then block size B+2, and so on through block size B+(T1−B) =
T1. For t = B,B + 1, ..., T1 we have

tW = −a1E∗t (W )− a2E
∗
t

¡
W 2
¢
+ tE∗t (W ) .

Now let zt = tE∗t (W ) and run the regression

zt = a1E
∗
t (W ) + a2E

∗
t

¡
W 2
¢
+Wt+ error.

The estimated coefficient on the trend is the RMB Bartlett-corrected test statistic.
7Bartlett (1937) originally proposed this adjustment strategy to the log-likelihood ratio statistic to

achieve a test with better size.
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5 Simulation results

This section presents simulation results for assessing the performance of the RMB

Bartlett corrected sup—t2 test in small samples. All of the simulation work includes

a constant in estimation.

The first set of results that we discuss are simulations that confirm the prediction that

long-horizon asymptotic power advantages are present in small samples under regressor

endogeneity. The DGP is as in Assumption 1 where

et = a11et−1 + a12ut−1 +mt,

ut = nt,

and (mt, nt)
0 iid∼ [0, φ] , φmm = φnn = 1,−1 < φmn < 0. This DGP exhibits endogeneity of

the regressor with a fixed alternative hypothesis. The endogeneity factor in the short-

horizon regression is c (T ) = E (
P

xtet+1) (
P

x2t )
−1
= O(T−1) and for the long-horizon

regression is ck(T ) = O(T−1).8 We generate 5000 samples of T = 100.
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Figure 3. Horizons that maximize relative size-adjusted power between long- and

short-horizon tests for T = 100.

8For this DGP, the endogeneity factor is c (T ) = (a12 + a11φmn)
³
1− (ρ (T ))2

´
(1− a11ρ (T ))

−1
=

(a12 + a11φmn)
α2−2Tα

T 2a11−T2−Tαa11 . Under the null hypothesis (b = 0), we set a12 = a11 = 0 but allow

variations in φmn.
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Figure 3 shows the horizon k∗ that maximize the relative size-adjusted power of the
conventional t-test. This is obtained by searching k ∈ [1, 20] , φmn ∈ [−0.9, 0.1] , a12 ∈
[−0.9, 0.1] with (a11, b, α) = (0.1, 10,−5) . k∗ = 1 in cases where the long-horizon re-

gression test does not have local power advantages. As can be seen from the figure,

the size-adjusted power of long-horizon regression tests consistently dominate those of

short-horizon tests in this region of the parameter space.9

Although we obtained these values of k∗ using the conventional t-test, the results
are not sensitive to this at all. In extensive simulation work, the k∗ that maximizes the
size-adjusted power of the sup−t2 test, as well as the size-adjusted power of this test is
very similar to that found for the conventional t−test. (These results are available upon
request from the authors but are not reported in the paper to economize on space.)

Next, we examine the small sample performance of the sup—t2 test. Table 2 displays

simulations to examine the effective size of the asymptotic sup—t2 test and the RMB

Bartlett corrected test for T = 100. It can be seen that the asymptotic test is oversized

at k = 10, 15, 20 whereas the RMB Bartlett-corrected test is reasonably sized at those

horizons and is somewhat undersized for k = 1, 5. For T = 100, the Bartlett correction

is seen to give tests that are better sized than the asymptotic test.

9Asymptotic standard errors computed by Andrews’s (1991) method.
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Table 2: T = 100, effective size of asymptotic and RMB-Bartlett corrected
sup−t2 test. (a11, a12, α) = (0, 0,−5)

Asymptotic RMB-Bartlett corrected

φmn k = 1 k = 5 k = 10 k = 15 k = 20 k = 1 k = 5 k = 10 k = 15 k = 20

A. Nominal 5 % test

-0.9 0.034 0.056 0.112 0.171 0.218 0.022 0.027 0.058 0.084 0.102

-0.7 0.035 0.049 0.114 0.158 0.207 0.026 0.023 0.064 0.085 0.104

-0.5 0.042 0.048 0.120 0.165 0.215 0.032 0.027 0.063 0.085 0.099

-0.3 0.054 0.062 0.128 0.180 0.217 0.035 0.029 0.072 0.090 0.105

-0.1 0.067 0.072 0.147 0.194 0.230 0.041 0.036 0.072 0.088 0.112

B. Nominal 10 % test

-0.9 0.065 0.086 0.171 0.232 0.279 0.047 0.046 0.083 0.124 0.149

-0.7 0.061 0.076 0.155 0.199 0.251 0.041 0.041 0.083 0.118 0.129

-0.5 0.064 0.068 0.148 0.199 0.249 0.047 0.037 0.077 0.104 0.122

-0.3 0.067 0.068 0.140 0.192 0.239 0.042 0.035 0.078 0.102 0.114

-0.1 0.067 0.073 0.148 0.195 0.230 0.041 0.037 0.072 0.088 0.113

Next, we consider size and power performance of the asymptotic and RMB Bartlett

corrected sup—t2 test for sample sizes T = 100, 200, and 300 and report the results in

Table 3. For longer horizons, say k = 20, a time-series length of T = 300 is required

for the asymptotic sup—t2 test to be correctly sized. The RMB Bartlett-corrected sup-t2

test is for the most part undersized when T = 200 and T = 300. Local-to-unity power

of the RMB Bartlett-corrected tests rival those of the size-adjusted asymptotic sup—t2

tests. While the coarse grid of horizons that we report do not, in many cases, pick off

the horizon that gives the test its maximal power, results for the horizons that we do

report show that long-horizon power advantages hold up. These results indicate that

the RMB Bartlett correction to the asymptotic sup—t2 test should work well in practice.
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Table 3: Local-to-Unity Effective Size and Power of asymptotic and RMB Bartlett corrected
sup−t2 test. (a11, a12, α, φmn) = (0, 0,−5,−0.9) under the null. ρ (T ) = 1 + α/T, b (T ) = b/T

with (a11, a12, α, b, φmn ) = (0.1,−0.3,−5, 20,−0.9) under the alternative.
Asymptotic RMB Bartlett corrected

T k = 1 k = 5 k = 10 k = 15 k = 20 k = 1 k = 5 k = 10 k = 15 k = 20

A. Size of nominal 5% test Size of nominal 5% test

100 0.034 0.056 0.112 0.171 0.218 0.022 0.027 0.058 0.084 0.102

200 0.022 0.018 0.047 0.081 0.113 0.019 0.008 0.019 0.037 0.053

300 0.021 0.009 0.030 0.052 0.066 0.018 0.004 0.012 0.016 0.027

B. Size of nominal 10% test Size of nominal 10% test

100 0.065 0.086 0.171 0.232 0.279 0.047 0.046 0.083 0.124 0.149

200 0.063 0.042 0.080 0.125 0.161 0.047 0.018 0.031 0.058 0.078

300 0.061 0.030 0.059 0.085 0.099 0.050 0.012 0.022 0.034 0.045

C. Power of 5% size-adjusted test Power of nominal 5% test

100 0.880 0.883 0.930 0.843 0.649 0.636 0.581 0.896 0.844 0.675

200 0.827 0.808 0.881 0.900 0.928 0.546 0.246 0.576 0.857 0.924

300 0.794 0.804 0.803 0.883 0.937 0.412 0.131 0.330 0.670 0.886

D. Power of 10% size-adjusted test Power of nominal 10% test

100 0.963 0.965 0.978 0.933 0.785 0.819 0.722 0.940 0.896 0.751

200 0.946 0.929 0.956 0.977 0.977 0.772 0.405 0.744 0.929 0.962

300 0.926 0.938 0.934 0.971 0.986 0.772 0.296 0.500 0.831 0.950

6 Predictability of long-horizon equity returns

We return to the empirical example and apply the RMB Bartlett correction to the sup—t2

tests of whether the log dividend yield predicts future stock returns.

Since potential power advantages of long-horizon regressions hinge on the endogeneity

of the regressor, we run a Hausman test to investigate whether this is the case. Lagged

values of the dividend yield are evidently weak instruments since using three lags as

instruments yields a χ21 statistic value of 2.31 (p-value=0.128). Employing the real

interest rate as an instrument yields a test statistic of 109.2 which rejects exogeneity of

the dividend yield at any reasonable level. Employing the real interest rate and three

lags of the dividend yield as instruments gives a test statistic of 9.69 (p-value=0.002).

The weight of the evidence rejects the exogeneity of the dividend yield.
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Because of the unusual behavior of stock prices associated with the bull market of

the 90s and the subsequent decline in 2001-2002, the slope estimates are sensitive to the

sample period. In recognition of this sensitivity, we run the regressions for horizons 1

through 20 initially using 1990 as the end of the sample and then recursively updating

the sample through 2002. Since the true value of the local-to-unity parameter α < 0

is unknown, the exact critical values for the test will be bounded between the critical

values for the t2 test and the sup—t2 test.10 To compare the inferences that one would

draw from the most liberal and the most conservative tests, for each sample we conduct

four tests of predictability: i) the conventional t2 test, ii) the RMB corrected t2 test, iii)

the asymptotic sup—t2 test, and iv) the RMB Bartlett-corrected sup—t2 test.11

kmin, shown in Table 4 is the shortest horizon for which the null is rejected at the

5-percent nominal level, whereas k∗ is the horizon that gives the largest value of the test
statistic. We make several remarks about the table. The first point to note is that the

robustness of the RMB Bartlett-corrected test shows up in the stability of the results

across the different samples. As observations from the 1990s are added to the sample, the

asymptotic sup—t2 test and the conventional t2 test requires successively longer horizons

to reject the null. When the sample ends in 1991, the asymptotic sup—t2 test rejects the

null with k = 9, but when the sample ends in 2002, the shortest horizon for which the

test rejects is k = 16. In contrast, the kmin from both the RMB Bartlett corrected t2 test

and the corrected sup—t2 test are comparatively stable.

Secondly, if the regressor is stationary or if it is a persistent and weak unit-root

process, the RMB Bartlett corrected t2 test will be appropriate. Application of this test

is seen to consistently reject the null hypothesis at k = 10 in every sample with the

strongest evidence against the null coming at k∗ = 19 or 20.
If the regressor follows a local-to-unity process, then the RMB Bartlett-corrected

sup—t2 test is the appropriate choice. This test consistently rejects the null at k = 13.

For samples ending in 1997 and 1998 it rejects the null at k = 11,and the maximal RMB

Bartlett-corrected test statistics are obtained at horizon k∗ = 19 for every sample.

10The critical values for the sup−t2 test depend on the estimated value of δ. For the 1992 sample,
the 5% critical value is 6.677. For all other samples, it is 7.1822.
11Although it is well-known that the asymptotic t2 test suffers from substantial size distortion, the

Bartlett-corrected version of the test is only modestly oversized. The small-sample performance of these
tests are reported in the working paper [Mark and Sul (2004)].
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Table 4: Stock Return Predictability

kmin kmin k∗ kmin kmin k∗

T t2 BC t2 BC t2 sup−t2 BC sup−t2 BC sup−t2
1991 5 10 20 9 13 19

1992 5 10 20 9 13 19

1993 7 10 13 9 13 19

1994 8 10 14 9 13 19

1995 8 10 13 10 13 19

1996 8 10 14 10 13 19

1997 9 10 14 11 11 19

1998 9 10 14 12 11 19

1999 10 10 14 13 13 19

2000 12 10 19 14 13 19

2001 12 10 19 15 13 19

2002 13 10 19 16 13 19
Notes: kmin is the shortest horizon for which the test rejects the null hypothesis. k∗ is
the horizon that gives the maximal test statistic value. BC denotes RMB Bartlett

correction.

7 Conclusion

Whether long-horizon regression tests have power advantages over short-horizon tests

has been an open question for some time. This paper addressed this question and showed

that long-horizon tests do have local asymptotic power advantages over short-horizon

tests under endogeneity of the regressor. Power advantages can be found to accrue both

under covariance stationarity of the regressor or under local-to unity. While asymptotic

theoretical justification for using long horizons exists, small-sample OLS bias causes

size distortion in the asymptotic tests. Because conventional bias adjustment may not

be easily handled at long horizons when the DGP is unknown, we suggest resampling

strategies to correct for test size distortion.

We examined the recursive moving block Bartlett correction to obtain sup—t2 tests

that are better sized in small samples and found it to be reasonably sized both at short

and long horizons. The RMB Bartlett corrected test was also found to effectively

maintain small-sample power advantages of long-horizon tests.
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Application of the small-sample adjustments to U.S. stock market data finds that

the hypothesis that the dividend yield does not predict returns is rejected with 13-year

return horizons using the most conservative RMB Bartlett-corrected sup-t2 test.
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Appendix

This appendix provides proofs and details for the main results in the text.

A. Asymptotic Power Advantage when xt is I (0) .

Let � (k) = (�1,k, ..., �T,k) and x = (x1, ..., xT ) . The proof of Proposition 1 is aided by the

following lemmas.

Lemma 1 Under Assumption 1, the regression error is asymptotically orthogonal to the
regressor,

plim
T→∞

T−1x0�̂ (k) = 0.

Proof. x0� (k) = Op

¡
T 1/2

¢
, which gives T−1x0� (k) = op (1) . Since βk − β̂k →p 0, it

follows that plim
T→∞

T−1x0�̂ (k) = plim
T→∞

T−1x0
³
� (k) + x

³
βk − β̂k

´´
= 0.

Lemma 2 Under Assumption 1, the long run variance of �̂t,k is

plim
T→∞

T−1�̂ (k) �̂0 (k) = Ω�� (k) = E
¡
T−1� (k) �0 (k)

¢
.

Proof. First note that βk− β̂k →p 0 and T−1x0x is Op (1) . Then from Lemma 1, we

have

plim
T→∞

T−1�̂ (k) �̂0 (k) = plim
T→∞

T−1
³
� (k) + x0

³
βk − β̂k

´´³
� (k) + x0

³
βk − β̂k

´´0
= plim

T→∞
T−1� (k) �0 (k) + plim

T→∞

∙³
βk − β̂k

´2 ¡
T−1x0x

¢¸
= Ω�� (k) .

Lemma 3 Under Assumption 1, the ratio of the long run variance of the kth and 1st
horizon regression coefficients is

plim
T→∞

⎡⎣V
³
β̂1

´
V
³
β̂k

´
⎤⎦ = Ωee

Ω�� (k)
.
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Proof. From Lemma 1 and 2, we have

plim
T→∞

⎡⎣V
³
β̂1

´
V
³
β̂k

´
⎤⎦ = plim

T→∞

"
(x0x/T )−1 (x0êê0x/T ) (x0x/T )−1

(x0x/T )−1 (x0�̂ (k) �̂0 (k) x/T ) (x0x/T )−1

#

= plim
T→∞

∙
x0êê0x/T

x0�̂ (k) �̂0 (k)x/T

¸

= plim
T→∞

⎡⎢⎣ x0ee0x/T +
³
β1 − β̂1

´2
x0x/T

x0� (k) �0 (k)x/T +
³
βk − β̂k

´2
x0x/T

⎤⎥⎦
= plim

T→∞

∙
x0ee0x/T

x0� (k) �0 (k)x/T

¸
=

Ωee

Ω�� (k)

It holds because by Assumption 1 we get βk−β̂k →p 0 and T−1x0e = T−1x0� (k) = op (1).

Proof of Proposition 1 Proposition 1 follows directly from Lemmas 1,2 and 3.

B. Asymptotic Power Advantage when xt is local-to-unity

Before we proceed the formal proof of Proposition 2, here we provide an intuitive expla-

nation by using a simple example. Suppose that xt is I (1) and is correlated with et+1.

Then we may split the regression error et+1 into two components: et+1 = e∗t+1 + e0t+1
where E

¡
xte

∗
t+1

¢ 6= 0 and E¡xte0t+1¢ = 0. Then we have
limT→∞

1

T

T−kX
t=1

E
¡
xte

∗
t+1

¢
= limT→∞

1

T

T−kX
t=1

t−1X
l=1

E
¡
∆xt−le∗t+1

¢
= Λxe. (A.1)

Note that correlation between e0t+1 and ut+1 exists. From Hansen (1995), we have

1√
T

[Tr]X
t=1

Ã
ut

e0t

!
=⇒

Ã
ΩxxB1 (r)

Ωee

n
δB1 (r) +

¡
1− δ2

¢1/2
B∗2 (r)

o ! , (A.2)

where B1 and B∗2 are independent standard Brownian motions and =⇒ denotes weak

convergence with respect to the uniform metric and δ = Ωxe (ΩxxΩee)
−1/2 .

Combining (A.1) with (A.2) provides the limit distribution of T−1
PT−k

t=1 xtet+1,

T−1
T−kX
t=1

xtet+1 =⇒ Rδ

Z
B1dB1 +R

p
1− δ2B1dB

∗
2 + Λxe, (A.3)
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whereR = Ω
1/2
xx Ω

−1/2
ee . Under the general setting, it is not necessary to split the regression

error term into two components. Replacing B by eJ in (A.3) yields the following lemmas.
Lemma 4 Under Assumption 2,

1. T−2
PT−k

t=1 x̃2t =⇒ Ωxx

R eJ2dr
2. T−1

PT−k
t=1 x̃tũt+1 =⇒ Ω

1/2
xx

R eJdB1 + Λxx

3. T−1
PT−k

t=1 x̃tẽt+1 =⇒ Rδ
R eJdB1 + R

p
1− δ2 eJdB∗2 + Λxe where R = Ω

−1/2
xx Ω

1/2
ee ,

δ = Ωxe (ΩxxΩee)
−1/2 , and B2 is the standard Brownian motion distributed inde-

pendently of B1.

4. T−1
PT−k

t=1 x̃tẽt+k =⇒ Rδ
R eJdB1+Rp1− δ2 eJdB∗2+Λxe−Λ∗xe,k−1 where Λ∗xe,k−1 =

limT→∞ 1
T

PT
t=k+1

Pk−1
l=1 E(∆xt−let) .

Proof of Lemma 4: The proof of Part 1 and 2 are provided by Phillips (1988). Part

3 can be directly obtained from combining the results of Hansen (1995) and part (e) in

lemma 3.1 in Phillips (1988). Note that if E(etut−l) 6= 0 for l ≥ 0 but E(xtet+k) = 0 for
k ≥ 1, then Part 3 becomes

T−1
T−kX
t=1

x̃tẽt+1 =⇒ Rδ

Z eJdB1 +R
p
1− δ2 eJdB2

Further note that if E(etut−l) = 0 for l > 0, E(etut) = Σxe, and E(xtet+k) = 0 for k ≥ 1,
then Part 3 becomes

T−1
T−kX
t=1

x̃tẽt+1 =⇒ R∗δ∗
Z eJdB1 +R∗

q
1− (δ∗)2dB2

where R∗ = Σ
−1/2
xx Σ

1/2
ee , δ = Σxe (ΣxxΣee)

−1/2 .

Part 4: Observe that

1

T

T−kX
t=1

xtet+k =
1

T

TX
t=k−1

xt−ket =
1

T

TX
t=k−1

xt−1et − 1

T

TX
t=k−1

k−1X
l=1

∆xt−let + op (1) , (A.4)

where the last term is given by − α
T 2

Pk
l=1 xt−let which becomes op (1) . Hence the limit

distribution in (A.4) can be directly obtained from Part 3 and by letting Λ∗xe,k−1 =
limT→∞ 1

T

PT
t=k+1

Pk−1
l=1E(∆xt−let) .

30



Proof of Proposition 2 Note that

T−1
T−kX
t=1

xt�t+k,k = T−1
T−kX
t=1

xtet+1 + ...+ T−1
T−kX
t=1

xtet+k

+
b1
T

Ã
T−1

T−kX
t=1

xtet+1 + ...+ T−1
T−kX
t=1

xtet+k

!

= T−1
T−kX
t=1

xtet+1 + ...+ T−1
T−kX
t=1

xtet+k + op (1)

The last term can be rewritten as

T−1
T−kX
t=1

xtet+1 + ...+ T−1
T−kX
t=1

xtet+k =
k

T

TX
t=k−1

xt−1et − 1

T

kX
s=2

TX
t=k−1

s−1X
l=1

∆xt−let

For notational convenience, denote

Λxe,k−1 = lim
T→∞

1

T

1

k

kX
s=2

TX
t=k−1

s−1X
l=1

E (∆xt−let) =
1

k

kX
s=1

Λ∗xe,k−1.

Note that Λ∗xe,0 = 0. Then directly from Lemma 4, we have

T−1
T−kX
t=1

x̃t�̃t+k,k =⇒ k

µ
Rδ

Z eJdB1 +R
p
1− δ2 eJdB2 + Λxe

¶
− kΛxe,k−1.

The OLS estimator of the slope coefficient for the kth horizon regression,

β̂k =

PT−k
t=1 x̃t�̃t+k,kPT−k

t=1 x̃2t
.

By Assumption 2, we have

T β̂k = kb+
T−1

PT−k
t=1 x̃t�̃t+k,k

T−2
PT−k

t=1 x̃2t
.

From Lemma 4, it follows that

Tβ̂k =⇒ kR

½
δ

Z eJdB1 + ¡1− δ2
¢1/2 Z eJdB2¾µZ eJ2¶−1

+k
Λxe − Λxe,k−1

Ωxx

µZ eJ2¶−1 + kb.
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Define tβ(k) = β̂k/
q
V (β̂k), and V (β̂k) = Ω̂��(k) [

P
x2t ]

−1
. Since Ω��(1) = Ωee, tβ (k)

can be rewritten as

tβ(k) =
β̂k

k

qbΩee

Ã
T−kX
t=1

x̃2t

!1/2
.

Hence it is straightforward to show that

tβ(k) =⇒ δτ 1c +
¡
1− δ2

¢1/2
N(0, 1) +

µ
Λxe − Λxe,k−1√

ΩxxΩee

¶µZ
J̃2
¶−1/2

+ bR

µZ
J̃2
¶1/2

,

where τ 1c =
³R

J̃2
´−1/2 R eJdB1.

C. Derivation of formulae in example 1

Let a11(L) ≡ (1− a11L)
−1 =

P∞
j=0 a

j
11L

j and ρ(L) ≡ (1− ρL)−1 =
P∞

j=0 ρ
jLj , where L

is the lag operator. Then rewrite the innovations process as,

et+1 = a12(T )a11(L)ut + a11(L)mt+1,

xt = ρ(L)ut.

It follows that

E(et+1xt) = E ([a12(T )a11(L)ut + a11(L)mt+1] [ρ(L)ut])

=
a12(T ) + a11φmn(T )

1− a11ρ
=

a12 + a11φmn

(1− a11ρ)
√
T
.

Thus, we have determined that β1(T )
p→ b(T ) + c(T ) where

c(T ) =
E(et+1xt)

E(xt)2
=
(a12 + a11φmn)

(1− a11ρ)

1√
T

¡
1− ρ2

¢
,

Now, for k = 2,

rt+2 + rt+1 = b2(T )(1 + ρ)xt + �t,2,

�t,2 = et+2 + et+1 + β1(T )ut+1.

Therefore, b2(T ) = b(T )(1 + ρ) = b√
T
(1 + ρ). As above, we can write

et+2 = a12(T )ut+1 + a12(T )a11a11(L)ut +mt+2 + a11mt+1 + a211a11(L)mt,

xt = ρ(L)ut.
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from which we obtain,

E(et+2xt) =
a12 (T ) a11
1− a11ρ

+
φmn (T ) a11

2

1− a11ρ
=

a11 (a12 + φmn a11)

(1− a11ρ)
√
T

= a11E(et+1xt).

It follows that

E[�t,2xt] = E[(et+2 + et+1)xt] = (1 + a11)

µ
a12 + φmna11

(1− a11ρ)
√
T

¶
= c2(T ).

Continuing on in this way, it can be seen that for any k, bk(T ) = b(T )
³Pk−1

j=0 ρ
j
´
=

b(T )
³
1−ρk
1−ρ

´
, and

E (�t,kxt) =

µ
a12 + φmna11

(1− a11ρ)
√
T

¶Ãk−1X
j=0

aj11

!
=

µ
a12 + φmna11

(1− a11ρ)
√
T

¶µ
1− ak11
1− a11

¶
.

Finally, divide by E (x2t ) = (1− ρ2)
−1 to get

ck(T ) =

µ
a12 + φmna11

(1− a11ρ)
√
T

¶µ
1− ak11
1− a11

¶¡
1− ρ2

¢
.
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