GDP and Temperature: Evidence on Cross-Country Response Heterogeneity

Kimberly Berg

Chad Curtis

Nelson Mark

Miami University

University of Richmond

University of Notre Dame and NBER

IAEE Conference Oslo 28 June 2023

We Revisit the Evidence

- ▶ We revisit international evidence on effect of temperature shocks on GDP growth
- ▶ Most evidence based on fixed-effects panel data estimation
 - Bansal and Ochoa (2011), Dell, Jones, and Olken (2012), Burke, Miguel, and Hsiang (2015) Leta and Tol (2019), Henseler and Shumacher (2019).

Consensus findings

- ▶ Higher temperature may hurt growth for all countries.
- Higher temperature hurts growth for the poor but may have no effect on the rich

Why?

Panel methods

- ▶ Impose extensive homogeneity in response across countries
- Time fixed effects induce variable transformations, clouding the interpretation
- ▶ What we do instead
 - We employ (individual) local projections to get grwoth impulse response to temperature shock
 - LPs allow unrestricted response heterogeneity across countries
 - ▶ LPs allow estimation of longer horizon growth effects
 - We can study the determinants of the heterogeneity

Main Findings

- Global temperature shock causes damage to rich country growth
 - ▶ G-7 countries growth declines. All except Canada are significant
- ▶ A mixed bag for middle and low income countries
- ▶ Positive growth responses more likely for countries that are
 - Poorer
 - Slow growing
 - Less educated
 - ▶ Less open to trade,
 - More authoritarian

Data

- Economic capita from World Bank World Development Indicators.
 - ▶ Per capita GDP are constant 2010 US dollars
 - Maximum span 1960-2017

▶ 137 countries with at least 30 consecutive observations

▶ Temperature are population weighted by year and country

- Monthly data from weather stations interpolated at 0.5×0.5 lat./lon. grid (Matsuura 2018)
- Overlay with population data (2000) from GPWv4 (Gridded Population of the World)

Comment about Panel Regression with Time FE

$$\Delta y_{j,t} = \theta_t + \beta \tau_{j,t} + \epsilon_{j,t}.$$
 (1)

$$\Delta y_{j,t} - \frac{1}{N} \sum_{j=1}^{N} \Delta y_{j,t} = \beta \left(\tau_{j,t} - \frac{1}{N} \sum_{j=1}^{N} \tau_{j,t} \right) + \left(\epsilon_{j,t} - \frac{1}{N} \sum_{j=1}^{N} \epsilon_{j,t} \right).$$
(2)

GDP & Temperature

Global and Idiosyncratic Temperature

$$\blacktriangleright$$
 Global (G_t):

$$G_t = \frac{1}{N} \sum_{j=1}^N \tau_{j,t}$$

▶ Idiosyncratic
$$(I_{j,t})$$

▶ $I_{j,t}$ is residual from regressing $\tau_{j,t}$ on G_t and a constant.

$$I_{j,t} = \tau_{j,t} - \delta_j G_t - \alpha_j$$

Global Temperature

Cross-Sectional Average of Country Annual Temperatures

GDP & Temperature

Empirical Specification (Jordà 2005) LPs

$$ln\left(\frac{y_{j,t+h}}{y_{j,t-1}}\right) = \beta_{j,h}^G G_t + \beta_{j,h}^I I_{j,t} + x'_{j,t} \gamma_{j,h} + \epsilon_{j,t+h}$$

where

- ► $x'_{j,t}\gamma_{j,h}$ are K lags of GDP growth, L lags of Global temperature, and M lags of Idiosyncratic temperature
- ▶ Lags K, L, and M determined by AIC.
- ▶ $\beta_{j,h}^G / \beta_{j,h}^I$: percent response in $\Delta y_{j,t}$ from t-1 to t+h due to 1°C increase in temperature in time t.

Pseudo-Panel Local Projections

Increase estimation precision with little point estimate distortion

- ► For horizon *h*, estimate pairwise SSE of estimates relative to remaining countries, $(\beta_{1,h}^G \beta_{j,h}^G)^2 + (\beta_{1,h}^I \beta_{j,h}^I)^2$.
- ▶ Create pseudo-panels of groups with lowest SSEs.
- ▶ For each group, estimate

$$ln\left(\frac{y_{j,t+h}}{y_{j,t-1}}\right) = \beta_h^G G_t + \beta_h^I I_{j,t} + x'_{j,t} \gamma_{j,h} + \epsilon_{j,t+h}$$

▶ Constrain β_h^G and β_h^I to be equal in each pseudo-panel.

• Estimate each pseudo-panel by GMM.

Point Estimate Comparison

Local Projection vs. Pseudo-Panel Local Projection Betas

A. Global Temperature B. Idiosyncratic Temperature

GDP & Temperature

Horizon 0: Pseudo-Panel Betas Global

50 -50 -100 0 100 Idiosyncratic

GDP & Temperature

Horizon 5: Pseudo-Panel Betas

Global

GDP & Temperature

Figure: Global (Dashed) and Idiosyncratic (Solid)

G-7 Plus Australia and China

Notes: Shaded areas are plus and minus 1.96 standard error bands.

GDP & Temperature

Figure: Global (Dashed) and Idiosyncratic (Solid)

Nine Poorest Countries

GDP & Temperature

Modeling Response Heterogeneity

$$\widehat{\beta^{\tau}}_{j,h} = X'_{j}\gamma_{\tau,h} + u_{\tau,h}$$

- ▶ Average log real GDP per capita
- ▶ Long term growth
- ► Openness
- ▶ GDP share of Agriculture (labor and crop exposure)
- Democracy
- ▶ High School
- ▶ Absolute latitude

Table: Cross-Sectional Regression with Global Temperature Local Projection Betas

	Horizon					
	0	1	2	3	4	5
log(GDP Per Capita)	0.133	-1.306	-1.411	-3.029	-4.177^{*}	-4.450
	(0.288)	(-1.644)	(-1.308)	(-2.070)	(-1.935)	(-1.452)
L.T. Growth	0.261	-1.511	-2.548	-4.258	-6.138	-7.122
	(0.768)	(-2.569)	(-3.193)	(-3.931)	(-3.841)	(-3.138)
Openness	0.011	0.037	0.052	0.070	0.103	0.132
	(1.304)	(2.619)	(2.720)	(2.731)	(2.694)	(2.435)
High School	0.013	0.075	0.131	0.236	0.382	0.483
	(0.903)	(2.953)	(3.824)	(5.049)	(5.555)	(4.945)
Democracy	-0.029	-0.030	-0.141*	-0.225	-0.458	-0.720
	(-0.823)	(-0.483)	(-1.685)	(-1.972)	(-2.725)	(-3.019)
Agricultural Share	0.028	0.034	0.094	0.065	0.157	0.378
	(0.628)	(0.441)	(0.892)	(0.458)	(0.746)	(1.268)
Latitude	-0.029	-0.043*	-0.047	-0.048	-0.055	-0.033
	(-2.026)	(-1.728)	(-1.375)	(-1.036)	(-0.813)	(-0.338)
Temperature	0.029	-0.031	-0.048	0.009	-0.135	-0.422
	(0.553)	(-0.352)	(-0.397)	(0.057)	(-0.556)	(-1.223)
R-Square	0.080	0.244	0.315	0.394	0.429	0.398
Observations	122	122	122	122	122	122

Modeling Response Heterogeneity: Global

$$\widehat{\beta}_{j,h} = X_{j}^{\prime}\gamma + u_{h}$$

- ▶ Average log real GDP per capita
- ▶ Long term growth (-)
- \blacktriangleright Openness (+)
- ▶ GDP share of Agriculture (labor and crop exposure)
- ► Democracy (-)
- ▶ High School (+)
- ▶ Absolute latitude