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Online Appendix

A. Estimation of the Labor Income Process

Carroll (1992) contains a more complete explanation and justi�cation for the estimation procedure.

Here we sketch the steps involved.

The procedure for estimating the probability of zero (transitory) income is as follows:

1. For each year, divide actual household income by the cross-sectional mean of income. Call the

result detrended household income. Normalization by the mean is intended to remove cycle and

trend components.

2. Regress detrended income on age, occupation, education, the interactions of these terms, age

squared, and gender. Use this regression to predict life-cycle (age-speci�c) movements in income

for each household.

3. Divide detrended income by predicted income. Call this Y Li;t.

4. Take the average income over all observations for household i: Call this average permanent income.

5. Take Y Li;t and divide by average permanent income. This creates up to 8 observations per house-

hold for a total of 4,550 observations on urban households. The entire procedure was repeated

separately for 12,163 rural households, since their income stream could be di¤erent. Categorize a

zero-income event as occurring when Y L divided by average permanent income is less than 0:1:

A substantial portion of the observations are concentrated near zero income. Following Carroll

(1992), negative observations are counted as zero. A total of 69, about 1:5%, of the observations

of urban households occur at or below 0.10 (i.e. 90% below trend income). The percentage for

rural households is 2:5%: A weighted average across urban and rural households gives p = 0:0224:

Table 1: Frequency of Zero Non-Capital Income Events, China

Head of Household Observations Near-Zero Events % Near-Zero Events

Urban Chinese 4,550 69 1.52

Rural Chinese 12,163 307 2.52

The entire process was repeated separately for the US PSID data, resulting in p = 0:0010.

To determine the relative magnitudes of the transitory and permanent shocks (�n, �u), we further

restrict the sample to heads of households whose marital status never changed, who never ran a business

as their primary occupation, and who never experienced a near-zero income event. Note, determining

who owns a business in the Chinese data is less straightforward than in the US data. These restrictions

should all reduce variability. The variance of the shocks are then estimated by regressing the sample

variance of lnY Lit�m � lnY Lit on m and a constant for all values of m that can be calculated.
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B. Analytical Characteristics of the Model

First, we discuss the analytical characteristics of the model relevant to the key results in the paper.

Then, we give the details on making the model economy stationary. The derivations necessary for the

analytical analysis are collected together in the third sub-section (B.3).

B.1. How the Parameters a¤ect the Saving Rate

Closed-form solutions to the model are not available, but we can deduce some of its properties from an

analysis of the household�s Euler equation. Throughout, we assume the (log) normality and conditional

homoskedasticity of the stochastic variables. As we show below, the analytical results with the log-

normality assumption are similar to those using the second order approximation. We begin with general

characteristics of the model, and then study how saving behavior responds to changes in income growth.

To ease notation, we drop the i subscript and let

Zt+1 �
Vt+1h

Et

�
V 1�t+1

�i 1
1�

: (1)

By analogy to the development in Parker and Preston (2005), we refer to Zt+1 as a preference shifter.

With this notation, we can write the household�s Euler equation as

1 = er��Et

"�
Ct+1
Ct

�� 1
�

Z
1��
�

t+1

#
: (2)

Assuming that consumption and utility are log-normally distributed (which is equivalent to taking a

second-order approximation of (2) around the deterministic steady state) gives the log-linearized version

of the Euler equation

E [� lnCt+1 � (1� �) lnZt+1] = � (r � �) + 1

2�
Var [� lnCt+1 � (1� �) lnZt+1] : (3)

Before discussing (3), some context under constant relative risk aversion (CRRA) utility can be

provided by setting  = 1=�

E (� lnCt+1) =
r � �


+


2
Var (� lnCt+1) : (4)

Under CRRA, an e¤ect that raises the expected future consumption growth rate is inferred to raise

the saving rate, since high consumption growth means low current consumption and hence high saving.

Under CRRA utility, saving behavior is summarized by a mean-variance relationship for consumption

growth. A high consumption variance household has higher demand for precautionary saving. This

depresses current consumption and raises expected consumption growth. The �rst term in (4) is typically

identi�ed with the e¤ect of the IES on consumption growth, because the coe¢ cient on (r � �) is the IES
1=. This is made clear in (3), where the IES � shows up explicitly. The second term in (4) is the e¤ect

of precautionary saving on mean consumption growth. An increase in the volatility of consumption

growth raises expected consumption growth.
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Now, comparing (4) to (3), under recursive preferences the mean-variance relationship of consump-

tion growth generalizes to a mean-variance relationship for � lnCt+1� (1� �) lnZt+1, which includes
the preference shifter term.

As we do not have explicit expressions for the saving rate, we infer the e¤ect of parameter values on

the saving rate through their e¤ect on the expected consumption growth rate. To assess how variations

in the parameter values a¤ect the saving rate, express (3) as

E (� lnCt+1) = �+ �+  : (5)

where

� � � (r � �) ; (6)

� � (1� �)E (lnZt+1) ; (7)

 � 1

2�
Var [� lnCt+1 � (1� �) lnZt+1] : (8)

We refer to � as the intertemporal substitution e¤ect, � as the �preference shifter,�and  as the precau-

tionary e¤ect on expected consumption growth. The preference shifter embodies the preference for the

timing of resolution of uncertainty. E (lnZt+1) can be interpreted as the cost of carrying uncertainty to

the future and � as the risk adjusted elasticity of substitution for uncertainty resolution. If � is posi-

tive (negative), individuals prefer later (earlier) resolution of uncertainty and raise (lower) consumption

growth by consuming less (more) today. Under log-normality, the cost of carrying uncertainty to the

future is E (lnZt+1) = ( � 1)Var(lnZt+1) =2: Substituting into Equation (7) gives

� =
(1� �) ( � 1)Var (lnZt+1)

2
: (9)

We use equations (6),(8) and (9) to study how changing the underlying parameters a¤ects household

saving decisions.

Income Growth g. We begin with the income growth rate because the large di¤erence in g between

China and the US is quantitatively the most important factor for explaining the di¤erence in saving

rates within the model simulations. While an exact analytical solution does not exist, we still can use

the equations to show the rich relationship between income growth and saving.

First, we note that consumption volatility (hence precautionary saving) increases with the income

growth rate, g. This can be inferred by looking at the steady state version of (3), where average

consumption grows at the same rate as income lnE
�
e� lnCt+1

�
= lnE

�
e� lnYt+1

�
= g + �n. As the

growth rate increases on the left hand side of (3), the only thing that can increase on the right hand

side are variances of utility or consumption growth.

Second, let M = A + Y be �cash-on-hand,� and s be the ratio of saving to total income (labor

income plus interest on assets). Then the direct relationship between the saving rate and the growth

rate implied by the budget constraint is (we ignore the stochastic nature of the model for illustration)

s

1� s =
�
M

C
� 1
��
1� e�(g+�n)

�
: (10)
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Holding M=C constant, an increase in the growth rate has a positive e¤ect on the saving rate s: This

formula is a bit cumbersome, however. We can get the same intuition by looking at saving as a fraction

of labor income, S=Y . For a given growth rate g, in the steady state, wealth will be proportional to

income W = !Y . Hence, in the steady state,

S

Y
=
�W

Y
=
�W

�Y

�Y

Y
= eg+�n

W

Y
: (11)

An increase in the growth rate,

@(S=Y )

@g
= eg+�n

�
W

Y
+
@(W=Y )

@g

�
; (12)

has a positive direct e¤ect (W=Y ) and an ambiguous indirect e¤ect @(W=Y )=@g. Hence, for a given

target wealth-to-income ratio, the saving rate increases with the growth rate because a higher g causes

the denominator Y to grow faster, and households need to save more aggressively to get the numeratorW

to grow at the new higher rate. This relationship captures the main mechanism driving our quantitative

simulation results.

However, the target wealth-to-income ratio (equivalently M=C) need not be invariant to g, which

gives rise to the indirect e¤ect. Higher future income from higher income growth makes households less

vulnerable to income risk. Households may reduce their target wealth-to-income ratio (andM=C), which

can depress the saving rate. Assessing the relative strength of these two e¤ects must be done numerically.

Clearly, the saving rate is zero when growth is zero and positive for some positive growth rates. Also,

the direct e¤ect is diminishing in g as shown in (10). Hence, the saving rate either increases with g

or, if the indirect e¤ect dominates when income growth is high, exhibits a hump-shaped pattern with

respect to g. The simulations in the paper further highlight the potentially non-monotonic relationship

between income growth and saving.

The remainder of this sub-section studies the analytical properties of the model with respect to

the preference parameters. Some readers may �nd these analytical results interesting because they

highlight the use of Epstein-Zin (1989)-Weil (1989) preferences within the precautionary framework.

The analytical derivations also contain insights relevant to the simulation results.

Intertemporal elasticity of substitution. The relationship between the saving rate, the IES and

the RRA is non monotonic. For clarity of exposition, we concentrate our discussion by assuming that

risk aversion is not too low ( > 1) and that people prefer early resolution of uncertainty (� > 1) :

If people are impatient (� > r), then increasing � lowers expected consumption growth (and hence

saving) directly by depressing the intertemporal substitution e¤ect, @�=@� < 0. When shifting con-

sumption across time periods is easy for impatient people, they will shift consumption towards the

present.

The e¤ect of increasing the IES on the preference shifter is

@�

@�
= �( � 1)Var (lnZt+1)

2| {z }
Direct

+
(1� �) ( � 1)

2

@Var (lnZt+1)
@�| {z }

Indirect

: (13)
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The �rst term in (13) is the direct e¤ect which is negative when  > 1. Raising � strengthens the

preference for early resolution of uncertainty and lowers the preference shifter @�=@� < 0: Thus, the

consumption growth (and hence saving) fall with �. The second term is an indirect e¤ect that works

through the variance of utility. When it becomes easier for people to move consumption across time

periods, higher � increases the volatility of consumption and utility (and Zt+1), which increases pre-

cautionary saving. The indirect e¤ect on the preference shifter � is negative when the risk aversion and

intertemporal substitution are high ( > 1 and � > 1) :

The e¤ect of increasing the IES on the precautionary component is

@ 

@�
=

1

2�2

h
(�)

2Var (lnZt+1)�Var (lnZt+1 �� lnCt+1)
i

| {z }
Direct

(14)

+
1

2�

@Var (� lnCt+1)
@�

+ (� � 1)2 @Var (lnZt+1)
@�

+ 2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@�| {z }

Indirect

:

The direct e¤ect of increasing � on the precautionary component is ambiguous. When people prefer

early resolution of uncertainty, on the one hand, raising � reduces precautionary saving. When people

can more easily substitute consumption across time, they will move consumption to the present. On

the other hand, since variation of the preference shifter contributes positively to the overall volatility,

precautionary saving increases with � through Var(lnZt+1 �� lnCt+1).
The indirect e¤ect works through the comovement with consumption growth. The stochastic part

of lnZt+1 is the (log) utility forecast error lnVt+1 � Et (lnVt+1) : See below for the derivation. A sur-

prise improvement in utility is positively correlated with consumption growth, making the covariance

term positive. The last term in (14) is the indirect e¤ect working through the changes in the varia-

tions of consumption growth and utility. As the variability of consumption and utility rise with the

substitutability, the indirect e¤ect is positive when � > 1:

Although the overall relationship between the intertemporal elasticity of substitution and the saving

rate cannot be unambiguously signed, we conjecture that increasing � lowers the saving rate when risk

aversion is low and raises the saving rate when risk aversion is high. Combining all e¤ects, we have

@E (� lnCt+1)

@�
= (r � �) + 

2
Var (lnZt+1)�

1

2�2
Var (lnZt+1 �� lnCt+1)| {z }

Direct

(15)

+
1

2�

�
@Var (� lnCt+1)

@�
+ (� � 1) (� � 1) @Var (lnZt+1)

@�

+2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@�

�
:

The �rst three terms are direct e¤ects and the term in curly brackets is the indirect e¤ect. The

overall indirect e¤ect, the last term, is positive when � > 1 and � > 1. The overall direct e¤ect is

increasing in  and � given volatility. For the direct e¤ect, increasing � lowers (raises) the saving rate

when  is relatively low (high).
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For  > 1, the saving rate pro�le has a U shape with respect to �. The desire to accumulate

a bu¤er-stock of assets to hedge against adverse income shocks intensi�es with greater risk aversion.

Raising � makes moving consumption around across time easier and leads to higher saving if  is high

enough (for there to be bu¤er stock asset accumulation). On the other hand, if risk-aversion is low,

people do not build up a large bu¤er stock. There is less desire to sacri�ce current consumption, and

when it is easy for people to move consumption across time periods, they will, due to their impatience,

move it to the present.

Risk Aversion. The overall e¤ect of increasing risk-aversion on the saving rate is also ambiguous.

Risk aversion has no e¤ect on the intertemporal substitution e¤ect, �. Increasing risk aversion has the

following e¤ect on the preference shifter,

@�

@
=
(1� �)Var (lnZt+1)

2
� � ( � 1)Var (lnZt+1)

2| {z }
Direct

(16)

+
(1� �) ( � 1)

2

@Var (lnZt+1)
@| {z }

Indirect

:

The �rst term is the e¤ect of change in the uncertainty cost, E (lnZt+1) which is increasing in risk

aversion. When � > 1; an increase in the uncertainty cost lowers � and hence saving. The second term

is the direct e¤ect of change in the risk adjusted elasticity of substitution. When  > 1, the uncertainty

cost is positive and raising risk adjusted substitutability strengthens the desire for early resolution of

uncertainty. This channel lowers � and hence saving. Combining these two e¤ects, increasing risk

aversion has a negative impact (lowering the saving rate) when risk aversion is relatively high  > �+1
2� .

When risk aversion is low (high), increasing  raises (lowers) the preference shifter and contributes

towards higher (lower) saving. Thus, for the direct e¤ects, the preference shifter pro�le has a hump

shape with respect to the risk-aversion coe¢ cient. The third term is the indirect e¤ect. We conjecture

that consumption and utility volatility declines with higher risk aversion, which leads the last term to

exert a positive impact on � when � > 1 and  > 1.

The e¤ect of increasing risk aversion on the precautionary component is

@ 

@
= [(� � 1)Var (lnZt+1) + Cov (�Ct+1; lnZt+1)]| {z }

Direct

(17)

+
1

2�

�
@Var (� lnCt+1)

@
(18)

+ (� � 1)2 @Var (lnZt+1)
@

+ 2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@

�
:

The sign of the direct e¤ect is positive under preference for early resolution of uncertainty � > 1:

The predicted pro�le of the saving rate with respect to the direct e¤ect of risk aversion is either the

saving rate rises with  or that it displays a U shape. The indirect e¤ect (in curly brackets) is negative

when � > 1 since the variability of consumption and utility declines with :
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Combining all e¤ects, we have

@E (� lnCt+1)

@
=

�
� � 1
2

�
Var (lnZt+1) + Cov (�Ct+1; lnZt+1)| {z }

Direct

(19)

+
1

2�

�
@Var (� lnCt+1)

@
+ (� � 1) (� � 1) @Var (lnZt+1)

@

+2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@

�
:

The overall direct e¤ect is positive for � > 1. The overall indirect e¤ect (in curly brackets) is negative

when � > 1 and � > 1; but is ambiguous for other values. When � > 1; increasing  raises (lowers)

the saving rate when  is relatively low (high) so that the indirect e¤ect is relatively small or positive

(high or negative). Thus the saving rate pro�le should exhibit a �hump shape�with respect to ; and

the peak occurs earlier with lower �: Note, if the volatility of consumption (hence utility) is relatively

high so that the positive direct e¤ect always dominates, the saving rate will monotonically rise with :

CRRA utility. The separation of intertemporal substitution and risk aversion gives additional rich-

ness to saving behavior beyond what is present under CRRA utility where  regulates both risk aversion

and intertemporal substitution. As a comparison, under CRRA utility, di¤erentiating (4) with respect

to  gives
@E (� lnCt+1)

@
=
� � r
2

+
1

2
Var (� lnCt+1) +



2

@Var (� lnCt+1)
@

: (20)

The direct e¤ect, given in the �rst two terms are positive with � > r. The indirect e¤ect, however has

a negative e¤ect. Higher risk aversion (or lower substitutability � = 1=) leads to lower consumption

volatility. Under CRRA utility, the saving rate pro�le should be increasing in  as long as the indirect

e¤ect is not too high.

Rate of time preference. The saving rate decreases with the rate of time preference, �. Less patient

individuals (high �) place relatively more importance on the present over the future and consume

relatively more in the present. The rate of time preference does not directly impact the precautionary

component of saving.

Income Shocks �n, �u, and p. Higher volatility of income shocks increase saving. An increase

in the volatility of the income shocks raises the volatility of consumption and utility and hence the

precautionary saving component. Volatility also a¤ects the preference shifter. The preference shifter

e¤ect is dominated by the precautionary saving e¤ect in all our simulations because volatility is strongly

related to precautionary saving.
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B.2. Stationarity and Convergence

The exogenous income process has a random walk component, so the model must be transformed to

induce stationarity before conducting the simulations. We do this by normalizing variables by permanent

income. Let lower case letters denote the normalized variables ct = Ct=Pt; at = At=Pt; and vt = Vt=Pt.

Normalizing the budget constraint in this way yields

at+1 = (at + yt � ct) e(r�g�nt): (21)

Similarly, the stationary form of utility is

vt =

�
c
��1
�

t + e��+(
��1
� )g

h
Et

�
v1�t+1 e

(1�)(g+nt+1)
�i ��1

�(1�)
� �

��1

; (22)

and the normalized form of the Euler equation is

1 = Et

8>><>>:er��
�
ct+1
ct

eg+nt+1
�� 1

�

264 vt+1�
Et

�
v1�t+1 e

(1�)(g+nt+1)
�� 1

1�

375
1��
�

9>>=>>; : (23)

Convergence requires that two conditions be jointly satis�ed. First, as in Deaton (1991) and Carroll

(1997), convergence of the model, from the Euler equation (23), requires

� (r � �) + [ (� + 1)� 1]�
2
n

2
� g � �2n

2
: (24)

Clearly, impatience � > r helps to achieve stationarity. The left hand side of (24) is increasing in :

When � > r+�2n=2; the left hand side is decreasing in � and the �rst term helps to achieve stationarity.

This condition reduces to Carroll�s and Deaton�s condition for CRRA utility upon setting � = 1: The

second condition comes from the maximized utility function (22), which is given by

� (r � �) + [ (� + 1)� 1]�
2
n

2
+ �

�
g � r � �2n

�
< g � �2n

2
: (25)

When income growth is relatively high, g > r + �2n; the stationarity condition is governed by the

utility function (25). In this case, once the �rst stationarity condition is satis�ed, higher risk aversion

helps to achieve stationarity as the left hand side is decreasing in . Impatience � also helps to achieve

stationarity. When g > � + �2n=2; higher intertemporal substitutability raises the left hand side of

(25). In this case, the �rst term may prevent convergence when � is su¢ ciently large.
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B.3. Derivations

This sub-section contains the derivations of the equations discussed above.

Derivation of the Euler equation (2). Begin with the utility function. If the household is given

extra consumption today (dCt), it lowers tomorrow�s assets by dAt+1 = �erdCt: Exploiting the envelope
theorem, if the household is on the optimal path, this in�nitesimal reallocation results in no change in

welfare. That is,
@Vt
@Ct

dCt = Et

�
@Vt
@Vt+1

@Vt+1
@At+1

�
(erdCt) (26)

where

@Vt
@Ct

=
�
1� e��

�
V

1
�
t C

� 1
�

t (27)

@Vt
@Vt+1

= V
1
�
t e

��
h
Et

�
V 1�t+1

�i ��1
�(1�)

V �t+1: (28)

Since the intertemporal marginal rate of substitution is

IMRSt+1 =
Et

�
@Vt
@Vt+1

@Vt+1
@At+1

�
@Vt
@Ct

; (29)

using (26) in (29) gives

E (IRMRSt+1er) = 1:

Now the budget constraint gives
@At+1
@At

=

�
1� @Ct

@At

�
er: (30)

Furthermore,

@Vt
@At

=
@Vt
@Ct

@Ct
@At

+ Et

26664 @Vt
@Vt+1

@Vt+1
@At+1

�
@At+1
@At

�
| {z }

(30)

37775
=
@Vt
@Ct

@Ct
@At

+ Et

�
@Vt
@Vt+1

@Vt+1
@At+1

�
1� @Ct

@At

�
er
�

=

�
@Vt
@Ct

� Et
�
@Vt
@Vt+1

@Vt+1
@At+1

er
��

@Ct
@At

+ Et

�
@Vt
@Vt+1

@Vt+1
@At+1

er
�

=
@Vt
@Ct

where the last equality comes from the envelope condition. Notice that the term in braces (by equation

(26)) is zero. This means,
@Vt
@At

=
@Vt
@Ct

: (31)
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Now substitute (31), (27), and (28) into (29) to get

IMRSt+1 = Et

 
@Vt
@Vt+1

@Vt+1
@Ct+1

@Vt
@Ct

!

= Et

8>><>>:
V

1
�
t e

��
h
Et

�
V 1�t+1

�i ��1
�(1�)

V �t+1V
1
�
t+1C

� 1
�

t+1

V
1
�
t C

� 1
�

t

9>>=>>;
=

8>><>>:e��
264 Vt+1�

Et

�
V 1�t+1

�� 1
1�

375
1��
� �

Ct+1
Ct

�� 1
�

9>>=>>; :

Using this IMRS to price the asset available to households, gives the Euler equation in the text.

Derivation of log-linearized Euler equation (3) by second-order approximation. That (3)

follows from (2) under log-normality of consumption growth and utility is obvious. Here, we show that

a second-order approximation around a deterministic steady state gives the same result. To see this,

we use the deterministic steady state as the evaluation point:

1 = exp

�
r � � �

�
1

�

�
gc +

�
(1� �)

�

�
lnZ

�
;

where gc = � lnC; steady state consumption growth. Note, we do not take normalization of variables

here. Hence, the steady state value C grows over time, gc > 0. The second order approximation gives

0 = Et

�
�
�
1

�

�
[� ln (Ct+1)� gc] +

�
(1� �)

�

�
ln
�
Zt+1= �Z

��
+

1

2�2
Et

n�
� ln (Ct+1)� gc � (1� �) ln

�
Zt+1= �Z

��2o
:

Using the deterministic steady state condition, r � � �
�
1
�

�
gc +

�
1��
�

�
lnZ = 0; we have

Et� lnCt+1 = � (r � �) + (1� �)Et lnZt+1

+
1

2�
Et

n�
� lnCt+1 � (1� �) ln (Zt+1)�

�
gc � (1� �) ln

�
Z
���2o

:

Taking unconditional expectations on both sides gives the result.

Property of lnZt+1: Before proceeding, we state and prove a pair of useful results.

Result 1 Under log-normality of consumption and utility,

lnZt+1 = �v;t+1 +

�
 � 1
2

�
Var (ln vt+1 + nt+1) ; (32)

E (lnZt+1) =

�
 � 1
2

�
Var (ln vt+1 + nt+1) ; (33)

Var (lnZt+1) = Var (ln vt+1 + nt+1) ; (34)

where �v;t+1 = ln vt+1 � Et (ln vt+1) + nt+1 � �n and vt+1 = Vt+1=Pt+1.
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To obtain (33), let ln vt+1 = ln (Vt+1=Pt+1) be conditionally (on date t information) normally dis-

tributed with conditional mean �v;t = Et (ln vt+1) and variance !v;t = Vart (ln vt+1) =Var(ln vt+1) with

the assumption of conditional homoskedasticity.1 Then,

lnZt+1 = lnVt+1 �
1

1�  ln
h
Et

�
V 1�t+1

�i
(35)

= ln vt+1 + nt+1 �
1

1�  ln
h
Et (vt+1e

nt+1)
1�
i

= ln vt+1 � Et (ln vt+1) + nt+1 � �n +
�
 � 1
2

�
Var (ln vt+1 + nt+1) ;

where the last equation uses the lognormality and conditional homoskedasticity. The last equation is

(32). Taking expectations on both sides gives (33), and taking variances gives (34).

Property of E (lnZt+1) : With the log-normality assumption, we have

E (lnZt+1) =

�
 � 1
2

�
Var (lnZt+1) :

Thus, E (lnZt+1) is positive (negative) for  > 1 (< 1); and is increasing in :

Without log-normality we have the same qualitative properties. From Jensen�s inequality,

exp fE [(1� ) ln vt+1]g � E
�
e(1�) ln vt+1

�
;

(1� )E (ln vt+1) � lnE
�
e(1�) ln vt+1

�
:

This gives

(1� )
�
E (ln vt+1)�

1

1�  lnE
�
v1�t+1

��
= (1� )Et (lnZt+1) � 0:

Thus, sgn (E lnZt+1) = sgn ( � 1) : We also have @E(lnZt+1)
@ > 0; since 1

1� ln
h
Et

�
v1�t+1

�i
is decreas-

ing in  from the property of the generalized mean.

Derivation of (13). Substituting (33) into (7) and di¤erentiating with respect to � gives (13).

Derivation of (14). The derivation of equation (14) uses the following result.

Result 2 Let y(x) be a random variable that depends on a parameter x. Then

@Var [y(x)]

@x
= 2E

�
y(x)

@y(x)

@x

�
� 2E [y(x)]E

�
@y(x)

@(x)

�
: (36)

Direct di¤erentiation of Var [y(x)] = E
�
y(x)2

�
� [E(y(x))]2 with respect to x gives the result (36).

1Note that if Vart (ln vt+1) =Var(ln vt+1) with the assumption of conditional homoskedasticity for ln vt+1;

Vart (ln vt+1 + nt+1) =Var(ln vt+1 + nt+1) :

11



Using the rule (36) to di¤erentiate  with respect to � gives

@ 

@�
=� 1

2�2
Var (� lnCt+1 � (1� �) lnZt+1) +



�
fCov (� lnCt+1; lnZt+1)� (1� �)Var (lnZt+1)g| {z }
Direct

+
1

2�

@Var (� lnCt+1)
@�

+ (� � 1)2 @Var (lnZt+1)
@�

+ 2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@�| {z }

Indirect

:

For the direct e¤ects of the �rst two terms, we have

@ 

@�

����
direct

=
1

2�2
[2�Cov (� lnCt+1; ln vt+1)� 2�(1� �)Var (ln vt+1)

� Var (� lnCt+1)� (1� �)2Var (ln vt+1) + 2(1� �)Cov (� lnCt+1; ln vt+1)
�

=
1

2�2
�
2Cov (� lnCt+1; ln vt+1)�Var (� lnCt+1) +

�
2�2 � 1

�
Var (ln vt+1)

�
=

1

2�2

h
(�)

2Var (ln vt+1)�Var (� lnCt+1 � ln vt+1)
i
:

Note also that the direct e¤ect can be rewritten as

1

2�2

h
(�)

2Var (lnZt+1)�Var (lnZt+1 �� lnCt+1)
i

which is the form presented in the text.

Derivation of (16). Substitute (33) in (7), and di¤erentiating with respect to  gives the result.

Derivation of (17). Substitute (33) in (8), and using the rule (36) to di¤erentiate  with respect

to  gives

@ 

@
=
1

2�
[2�(� � 1)Var (lnZt+1) + 2�Cov (�Ct+1; lnZt+1)]

+
1

2�

�
@Var (� lnCt+1)

@
+ (� � 1)2 @Var (lnZt+1)

@

+2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@

�
= [(� � 1)Var (lnZt+1) + Cov (�Ct+1; lnZt+1)] +

1

2�

�
@Var (� lnCt+1)

@

+ (� � 1)2 @Var (lnZt+1)
@

+ 2 (� � 1) @Cov (� lnCt+1; lnZt+1)
@

�
:

Derivation of (10). Begin with the budget constraint

At+1 = er (At + Yt � Ct) ;

and divide both sides by Ct to get�
At+1
Ct+1

�
egc;t+1 = er

�
At + Yt
Ct

� 1
�

(37)�
At+1
Ct+1

�
egc;t+1�r =

Mt

Ct
� 1;

12



where gc;t+1 = ln (Ct+1=Ct) and Mt = At + Yt; cash-at-hand. The saving rate is de�ned as

St = 1�
Ct�

er�1
er

�
At + Yt

:

Then, we have
1

1� St
=
At + Yt
Ct

� e�r
�
At
Ct

�
:

Applying (37), we obtain

St
1� St

=

�
At+1
Ct+1

�
egc;t+1�r � e�r

�
At
Ct

�
=

�
At+1
Ct+1

�
egc;t+1�r

�
1�

�
At=Ct

At+1=Ct+1

�
e�gc;t+1

�
=

�
Mt

Ct
� 1
��
1�

�
At=Ct

At+1=Ct+1

�
e�gc;t+1

�
:

Lastly, taking the steady state and the condition that income growth equals the consumption growth

gc = g + �n gives (10):

Stationary Transformation. Normalize the income process by Pt to get

Yt
Pt
= eut :

Normalizing the budget constraint gives

At+1
Pt

Pt+1
Pt

= er
�
At
Pt
+
Yt
Pt
� Ct
Pt�1

�
:

Let lower case denote variables normalized by Pt :

at+1e
g+nt+1 = er (at + e

ut � ct) : (38)

Now, normalizing the utility function gives

�
Vt
Pt

���1
�

=

�
Ct
Pt

���1
�

+ e��

(
Et

"�
Vt+1
Pt+1

Pt+1
Pt

�1�#) ��1
(1�)�

(39)

v
��1
�

t = c
��1
�

t + e��
n
Et

h�
vt+1e

g+nt+1
�1�io ��1

(1�)�

= c
��1
�

t + e��+(
��1
� )g

n
Et

h
(vt+1e

nt+1)
1�
io ��1

(1�)�
:
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Normalizing the Euler equation (2) gives

1 = er��Et

8>>>><>>>>:
�
Ct+1=Pt+1
Ct=Pt

�
Pt+1
Pt

��� 1
�

26664 Vt+1=Pt+1

E

��
Vt+1
Pt+1

Pt+1
Pt

�1�� 1
1�

�
Pt+1
Pt

�37775
1��
�

9>>>>=>>>>; (40)

= er��Et

8>><>>:
�
ct+1
ct

�� 1
�

e�
1
� (g+nt+1)

264 vt+1e
g+nt+1

E
h
(vt+1eg+nt+1)

1�
i 1
1�

375
1��
�

9>>=>>;
= er���

g
�Et

8>><>>:
�
ct+1
ct

�� 1
�

e�nt+1

264 vt+1

E
h
(vt+1ent+1)

1�
i 1
1�

375
1��
�

9>>=>>; :

Convergence Criterion (25) and (24). The stationarity conditions concern non-exploding at and

vt: The borrowing constraint always prevents degeneration of at and vt. If a household builds up enough

assets a with stationarity, the household can completely stabilize the consumption by setting ct = c;

which equals the expected income E (Yt=Pt) plus the expected annuity (er�g � 1)E (at) : Therefore, the
stationarity conditions are (i) the normalized utility in (39) does not explode, and (ii) E (at) does not

explode, which is equivalent to the condition that the right hand side of (40) is less than with ct = c.

From (39), with ct = c; we have constant utility vt = v. Applying this to the Euler equation� c
v

���1
�

= 1� exp
�
�� +

�
� � 1
�

�
g �  (� � 1)�2n

2�

�
:

Since c > 0 and v > 0; the stationarity condition from the utility function is given by

��� + (� � 1) g �  (� � 1)�2n
2

< 0:

From (40) with ct = c and vt = v together with the inequality, we have

� (r � �)� g +  (1 + �)�2n
2

� 0:

14



C. Simulated Moments Estimation

Letting ci;t be the logarithm of real consumption expenditures for household i in year t, the four

moments we use are

h (ci;t) =

0BBBB@
h1 (ci;t)

h2 (ci;t)

h3 (ci;t)

h4 (ci;t)

1CCCCA =

0BBBBBB@
ci;t�

ci;t��c
�c

�2�
ci;t��c
�s

�3�
ci;t��c
s

�4

1CCCCCCA ;

where �c = 1
NT

NX
i=1

TX
t=1

ci;t is the grand sample mean and s =

vuut 1
NT

NX
i=1

TX
t=1

(ci;t � �c)2 is the sample standard

deviation. Recall, that the distribution has been rendered stationary by the transformation described

in the previous section. Also, the higher-ordered moments are scaled so that they are all similar in

magnitude.

Let � = (�; �; ) be the parameter vector. For the simulated observations, let

h (�) =

0BBBB@
h1 (�)

h2 (�)

h3 (�)

h4 (�)

1CCCCA =

0BBBBBB@
ci;t (�)�
ci;t(�)��c

�c

�2�
ci;t(�)��c(�)

s

�3�
ci;t(�)��c(�)

s

�4

1CCCCCCA :

We simulate Ns = 50000 individuals over many periods, t. The simulated moments are calculated at

t = 20.

Note, �c in h2 (�) is the mean computed from the sample, and s in h3 (�) and h4 (�) is the standard

deviation computed from the sample. The idea is to scale the sample and simulated moments with the

same scaling factors so that we can treat them like constants.

Now let

H (c) =
1

NT

NX
i=1

TX
t=1

h (ci;t)

be the vector of sample moments and

H (c (�)) =
1

NsTs

NsX
i=1

TsX
t=1

h (ci;t (�))

be the vector of simulated moments and de�ne u (ci;t) = h (ci;t)�H (c). Then, 
NT = 1
NT

NX
i=1

TX
t=1

u (ci;t)u (ci;t)
0

is the sample covariance matrix. The simulated method of moments estimator selects the vector � that

minimizes

g (�; c)
0
W�1
NT g (�; c) ;
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where g (�; c) = H (c)�H (c (�)) and WNT =
�
1 + NT

NsTs

�

NT . Asymptotically,

p
NT

�
�̂ � �0

�
D! N (0; V�)

V� =

�
1 +

1

n

�
(B0
B)

�1
;

where n = lim
�
NT
NsTs

�
and B = E

h
@g(�;c)
@�0

i
. Inference is drawn using the sample counterparts.
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