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We begin with a discussion about the problems of inference associated with running OLS on the
pooled data. Section B. provides proofs of the propositions. Section C. describes the data used in
the analysis of long-run money demand and presents plots of point estimates from dynamic OLS
and panel dynamic OLS.

A. Pooled OLS

Consider the model in which there are no individual-specific trends, fixed effects, or common time
effects (a; = A; = 0 for all ¢ and 6; = 0 for all ¢). The pooled OLS estimator is
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Z;io (Agitum_j) (cf. proposition 18.1 of Hamilton (1994)). Thus for fixed N, as T — oo,
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Since B,; and BT are correlated, both medB - and AT . contribute to the bias. As N — oo,

VU,

\/— ZZ . [ B, dB , converges to a normal random variate but ‘/_ Zl 1 Ay, ; may diverge.
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Consistency follows by noting that lé)VT -y = Mg,lT (ﬁmNT). For fixed N as T — o0,

Myr 2 MN = sz L[ ByiB.,;. Since my; = Opy(1), we see that for fixed N as T — oo,

lNT ’y—> 0.
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B. Proofs of Propositions

The propositions generalize from the case in which the cointegrating regression contains no fixed
effects a; = 0, no time trends \; = 0 and no common time effects 8; = 0 for all ¢ = 1,..., N and
t=1,...,T. To prove the propositions, it is useful to begin with the asymptotic distribution theory
for this case as contained in lemmas 1 and 2.

Lemma 1 (Fized N, T — o0.) Consider the model (1) and (2) with a; = 0,\; = 0,0, = 0 for
alli =1,...,N and t = 1,...,T. The error-dynamics obey assumption 1. Then, for fired N, as
T — oo,

a. T( ) and VT(8; — 8;) are independent for each i.

Int ~
b. \/NT(ZNT -7) RS My'my, where My = % Zf\; [ B,;B.,; and
N
my = ﬁ 21:1 \/ Quu,i fﬁdeuz

c. [\/NTR(ZNT —1)]'[RDNR']_1[\/NTR(1NT -] 2 xX%(s) where R is an s x k restriction
matriz, Dy = MJ_VIVNMXIl’ My = % Zf\il [B,;B,;, and Vy = % Efvzl Quu,i [ BB

=i’

N p N _ -1 17 -1 _ 1 N 1 T /
d. Dyr =Dy £ 0, where Dyr = MhVarMyh, Myr = 35X, [ S0, ],

Vyr = % D oic1 Qi T% Yol L'tg;t] , and Qi 5 a consistent estimator of (yy, ;-

Proof. We know from single equation dynamic OLS that the estimators for 7 and §; converge at
different rates of T. To allow for these different convergence rates, we follow Hamilton (1994) and
Sims, Stock, and Watson (1990) and define the scaling matrix

VNTL, o - 0

0 VTL, - 0

Gnp = 0 0 - %
0 0 - VTI,,

Now

Grnr(Byp—0) = (VNT(\, —2) VT @) —8),... VT (& —8y)

_ [GJ‘&T (ZN:ZT:QZ-&;) GTVIT] i le_VlT (iigt”tﬂ

i=1 t=1

Part (b). We first prove part (b). To begin, we show that
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where My = % vazl [ B,;B.,;, and the Q; are positive definite matrices of constants. Partition
the sample moment matrix as

N
xS 2 n,) xt = [ M M |
zt—

— = Mo, v Moo Nt
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where
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Muynr = Z Zznzlit
T
21NT 3/2 Zl‘uz IETR m ZENtEin)
=1
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0 T % Zthl ZNTZ NT

(A.3) follows by observing that for fixed N as T' — oo,
i Mynr 2My=+3N (BB
ii. For each submatrix i of My, yr, W Yo Ll = WOP(T) 0.
iii. For each diagonal block of Mas N, % Zthl gitg:t LN Q;, a positive definite matrix of constants.
Next, in regard to Gyh S, S, g;,uit, observe that

. . T D
i. for each i, as T — 00, 7 ;1 ZyUit — /Quu,i [ BoidWui,

ii. since z;u;+ is a k—dimensional random vector of stationary zero mean variates and w; is

1 T D .
orthogonal to z;;, as T' — oo, i > i—1 Zitit — v;, where the v; are Gaussian random vectors.

It follows that

[ ZN= ZT= ZjUit ] N /Q R B .dW.;
JNT Ei:l( uu.t f—‘/i ”')
N T ZT= éltult D iﬁ
GNT DD it = . = ! (A.4)
i=1 t=1 : :
ET= ZntUNT UN
L T J
Combining (A.3) and (A.4) gives
\/NT(XNT ) = My my

for fixed N as T — oo.
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Part (a). For each i, as T — oo, ﬁZf\il Ef:lgituit} {% Elegituzt} 72720 (T) 20
It follows that Cov(my,v;) = 0. The independence between \/NT(ZNT ) and \/_ T(b; — 8)
follows because that m, and v; are Gaussian random vectors.

Parts (¢) and (d) are obvious and proofs are omitted. ||

Lemma 2 (Sequential limit distribution.) Consider the model (1) and (2) with a; = 0,\; = 0,0, =0
foralli=1,...,N andt = 1,...,T. The error-dynamics obey assumption 1. Then, as T — oo
then N — oo,

a ClﬂV_ThNT 7) A N(0,L) where Cy = (CY*)(CY*) =My VyMy',
My = W Zi:l Qyuyi, and Vy = ﬁ Zfil Qu,i€luu,i-

N P A —1 <7 -1 1 N 1 T /
b. Dy — Cn = 0, where Dy = My VNrMyp, Myt = 5 >0, |:ﬁ D1 zitzit}:

VNT = % Zfil Qum [% Zthl gitggt} , and (AZWH is a consistent estimator of Q. ;.
-1
Proof. We establish the asymptotic normality of [% PR fﬁmﬁi}l} L/—lﬁ SN i fﬁdem}
as N — oo. To lighten the notation, let U; = [ B,; B, and ¢; = \/Quu,i [ ByidWaui.
Part a (Asymptotic normality). We first show that {e;} ; obeys a central limit theorem for inde-

pendent but heterogeneously distributed observations. Working with the double indexed sequences
{en;}2,, we have

L&
i) eni= N ZQM
i1
i) py, =Elen:) = E{E(en;|Uni)} = E{0} =0
L&
i) fy, = N ZEM‘ =0
i1

w) Vi = Var(ey;) = E(enieni) = E{Elen;eni|Uni]} = E{Quu,niUni}

1
= _Quu,Niﬂvv,Ni

v) Ellen;l |H_é Ellv/Quu,Ni §v7deWu,NI||2+6
= E| Quu,NIQi{; Nl/wv,Niqu,NiHQ—Hs

ﬂfMMMMWWMmMMmW”
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N
UZ) VN = %ZVNZ ZV&I‘ eNl = % ZQUU,NiQm;,Ni
; i=1

where we use the law of iterated expectations to obtain ) and iv). Since £, y; is positive definite for
all i, Vv is O(1) and uniformly positive definite. It follows that (cf. Theorem 5.11 of White (1984)),

N

_ 1 D
vi?—YS "¢ 2 N0, T). A5
N m;—zﬁ (— ) ( )

where Vy = Var (\/—% Ef\il Qi)-

Part b (Convergence in probability). Now we show that U; = [ B, B’ obeys a law of large numbers
for independent but heterogeneously distributed observations. For the independent sequence {U;}$2,

i) </BB> ;n

’L’L) MN = %ZE(UZ) = i Zﬂvv,i

i=1

we have

VV,1 VV,1

i) E||U| = E”Ql/2 /Wm_m YL/ [+

VV,1 VV,1

< ||Ql/2 |1+6E||/WMW/ |1+6||Ql/2_||1+5

<A<o0

It follows that 4 Zi\il U; — My 2 0. (cf. Corollary 3.29 of White (1984)). This result, along with
(A.5) gives (cf. Theorem 4.25 of White (1984))

/ 1 N - 1 N D

cy'? = U; — e;| = N(0,1),
e [ ves
where Cy = MJ_VIV NM;, which establishes proves part (a) of the proposition.

Part (b) follows by observing that \AfN —Vy 20, where VN = % vazl ﬁuu,iUi, it follows that
Dy=My VyM ' —-Dy20. |

For convenience, we restate the propositions, beginning with

Proposition 1 (Fized N, T — oo with fived effects.) Let B,; = B,; — [ B,;. For the panel DOLS
estimator (10), for fited N as T — oo,

a. T( —7) and VT(8; — 8;) are independent for each i.

ZNT
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b. \/NT(WNT —7) LA My'my, where My =+ 57, J"BMB;“, and

NN (TR )

c. [VNTR( =V [RDNR’ VNTR( (Y — V] = x2(s), where Risansxk restm’ction
matriz, Dy =My VNM , My = sz':lfﬁuiﬁuiv and Vy = Zl 1Qumf_m

d. Dyr—Dy 50, where Dyr = MypVyrMyh, Myr = {% POl (Tz Y 1_nznﬂ :

G N T . - ‘ ‘ .
Vyr = % e Qi (% thl%ggt) ,and Quyi 18 a consistent estimator of Qyay ;-

Proof of proposition 1. In the fixed-effects model, the observations for the regression under con-
sideration are deviations from their time-series averages and we need only small modifications to the
asymptotic theory of lemmas 1 and 2.

Part (a). The independence of T'(y,,. — ) and VT(8; — 8;) (for i = 1,...,N) as T — oo for
fixed N is established along the lines of the proof of proposition ??.a and is omitted.

Part (b). Recall that Z;, = z;, — = Zlegit and @ = uy — 5 Zthl u;. By the asymptotic inde-
pendence established in part (a), the fixed N as T — oo asymptotic distribution of v/ N’ T yr—2)
is established by showing for fixed N as T' — oo,

Myhmyy 2 Mymy (A.6)
where
~ o~ ~ o~
Myt = 3z 2%1 Etj%l L, My = % Ef\%; [ BuiB.; _
Myr = \/%T Dim1 Dop—1 Liglhit my = \/Lﬁ >t VQuui [ BydWai

Observe that,

L. % ZtT:1 T lir = % Zthl T Wit

ii. % ZtT:1 Tjuir = % Zthl [Eit T Zt 1 —zt} {Uit - % Zthl Uit}
= % ZtT 1 Lt — {m Et—l Eit} {\/LT Ethl Uit}
L [ [ BuidWoi — Wyi(1) [ Byl

i, 2 S Eadly 2 [ (BuyiBli) — ([ By) ([ Byi) = [ (Byi — [ Byi) (Bui — [ B.)’
/

which establishes (A.6).

Parts (c) and (d) are obvious. ||
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Proposition 2 (Sequential limit distribution, fized effects.) For the panel DOLS estimator (10),
as T — oo then N — 00,

a. Cy/’VNT(y,, —7) & NOL), where Cy = (Cy/*)(Cy"?) = My VaMy ,
My = g S Qs and Vi = g S0 Qi Q0.

b. f)NT —Cy 2 0, where f)NT 1s defined in proposition 1.d.

Proof of proposition 2.
Establishing the sequential limit distribution follows the proof of proposition 1 with

U, = /BMB;N € =V Quu,i/Bviqui

where .
Evi = Em’ - fﬁm
BU) = E(me-B; >
= (3~ %) 9
= %vi,i
Var(e;) = Quu,iVar([ B,;dWy;)
% uu,iﬂmjl

Proposition 3 (Fized N, T — oo, fized effects and trends.) Let B,; = B,; — [ B,;. For the panel
DOLS estimator (16), for fited N as T — oo,

a. VT(b; —8,) is independent of T —7) and TS/Q(XN —Ay) for each i.

lNT

T(Yyr =) | D gt { Miv M
NT — = My my, where My = ’ .
T32An — Ay) NN N Mo,y Moo n
MllN_sz 1f—m M22N:1_121N’
Mél,N:[\/_ﬁ(I =2 2[—”1) T VLN(ITEUN_%IB”N) }’ and

_ \/Lﬁ Zfil Vi fﬁdem /
N [ N [frqul—%ﬁ} m“rquN Wan 1)} } ;

5
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Proof of proposition 8

Part (a). The independence of T'(y, ., — ) and VT(; —8;) (fori=1,...,N)as T — oo for fixed
N is established along the lines of the proof of proposition 7?7.a and is omitted.

Part (b). We show that for fixed N as T — oo,

My = My'my (A7)

where My and mjp are defined in proposition 3 and

M vt My nr my NT
Mnr = [ ’ b : Mmyp = |
M1 vt Mg nT N My NT
1 L1«
Munr = NZEZL@&
=17 =1
1 T 7~ 1 T 7~
/21,NT = { VNT572 Dot My VNT572 Zt:l@m}
LT
Mo Nyt = EZEZ Iy
=1
I K1
my Ny = _NZTZiit'ait
i=1 t=1
T T
T:}/Z t:lt 1t
Mo NT = :
1 T ;-
7572 241 LUNt
(A.8)
For M yr, observe that for fixed N as T — oo,
. D N 5
L. Munr = 5 ey S BuiBus
ii. for the ¢ —th column of My, nr,
1 < 1 < 1 1 —
A = pn e o [ £ 5]
=1 =1 =1 =1
1 < 1 & 1 <
=1 =1 =1
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1
I B .
_> / TD,,; 2/—1}1

iii. for the i—th diagonal block of Mas n,

1 T 1 T 2
P DU PP

)2

which establishes that for fixed N as T' — oo, Muy7T ZwM ~. Next, for mpy,, observe that

1. a typical element in the summation over ¢ in m; yr is

1 & 1 o
T Ziitait = 7 Ziituit
t=1 t=1
| L T
S S z_H z]

U, |:/ Edeuz - uz /—m:|

= V Quu1/Bdeu1

1o
az

It follows that

D -
gy Nt 7 Iy N = _z Qlui/ﬁvidWUi

my nr), = Ti/Qz;{t_(T;U}a”
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= LZT:ISU — [LZU

T3/2 o it \/T i
N [/ rdWi — §Wui(1):|
- M[a/z)wu,i(l)—/wml

which establishes (A.7). ||

1o

Proposition 4 (Sequential limits, fized effects and trends.) For the panel DOLS estimator of (16),
as T — oo then N — o0,

a. \/NT@NT —7) and T3/2(Ax — Ay) are independent.
b. Cy°VNT(yy, —1) ~ NQIy), where Cy = (CY’)CN®) = My nViinMy; .
M11,N = 6LN Zi\]:l vi,i; and v11,11 = 6LN Ziv:l Quu,iﬂvv,i-

AN P AN —1 %7 -1 1 N T ~ =~y
C. DNT — CN — 0, where DNT = MNTVNTMNT’ MNT = WZi:l Zt:lzitgita

-~ N T -~ ~ ~ Py . . .
Vyr = ﬁz Doim1 Dt QuuiZ iy, and Quu.i is a consistent estimator of Quu.i

Proof of proposition 4
Part (a). First, we establish that as T'— oo then N — oo, \/NT(lNT —7) and
T3/2(2N — Ay ) are independent. Recall that my y = ﬁ Zi\;l w/Quw-me-dWm- and my y =

{ N [frqul - W%(l)} o  Quun [frquN - M} }I, and observe that

i. conditional on B,;, Var(m, ) = & SN | Quui J"BMB:“,

=i

ii. from first principles, [rdW — == ~ N [0, 1—12} If [my n]i is the i—th element in my y, it
follows that Var[m, y]; = 24

iii. conditional on B,;,

Cov |:/Tqui _ Wu;(l)y/Bviqui} = /TBW. —/Bm. = /Tﬁvi _ %/ﬁvi'

It follows that Cov(my n, [Mmaon]i) = Quui U rB,; — %fﬁvi}'

Conditional on B vis

Var [ myN } —Vy = { Viun Viy }
Moy Voin Vo n

A10



1 N ~ o~y
Vll,N = ﬁzguuz/ﬁmﬁm
=1
1 1 1 1
V/QI,N = <_NQuu,1 |:/TBU1 - 5 /§v1:| P \/_NQuu,N [/TEUN - 5 /EUN:|>
Quu
Voo n = 12111\1

Now it can be seen that as N — oo, Vj, y %0, and My, y 0. Tt follows that as T — oo then
N — oo, \/NT(ZNT — ) and T%2(Ay — Ay) are independent.

Part (b). Establishing the asymptotic normality of the sequential limit distribution of v/ N’ T(y NT —7)
follows along the lines of the proof to proposition 2. I

Before we prove proposition 5, we rewrite the estimation problem in a form slightly different from
that in the text. Let yft be the error from projecting each element of y;; onto z;, and ift =x;,—Pizy
be the vector of projection errors from projecting each element of x,;, onto z,,, where ®; is a k X p;
matrix of projection coefficients. (In the text, we included the time trend in the projection.) Sub-
stituting the projection representations for y;; and z,, into (17) gives

vl = i + Nt + 6, + vt + ua. (A.9)

Taking the time-series average of (A.9) gives

+%ZGS+%ZWS, (A.10)

and subtracting (A.10) from (A.9) to eliminate the fixed-effects gives

T T
| (T +1) 1
1 t e rF i
Yit — T ;:1: Yis — /\Z |:t 2 :| + A2y T — £13‘|
1 & 1 &
+ 6, — T SE:1 Os| + uj — T S:E 1 Ujg- (A.ll)




Now take the cross-sectional average of (A.11) to get

1 & 1 1 Y T+1 1 Y 1 L&
TSRS I WA LWV EEC L IEEA D SRR 9) SEA

yiit* =\l + llzft* + 4u, (A.13)

where a ‘star’ denotes the deviation of an observation from both the time-series and cross-sectional
average added to the grand mean. That is,

yft* = y;'tt - % sT:1 y;'ts - % ;'V:l y§t + ﬁ Z;vﬂ Zstl y§s7
lft* = Egt - % ZZ:l lgs - % Zjvzl Eﬁt + ﬁ Z;Vﬂ Z§:1 l;t‘sa
th = Uit — % EZ:l Uis — % Zjvzl wjt + ﬁ E;Vﬂ E§:1 Ujs,
Aio= Ai— %Ei\le Aj,

b= t_%Zthlt:t_@'

Let the grand coefficient vector be 8’ = (v, Ay)’, and define

e @ F 00 - o
=1t _?o -

g = (e 0 & 0 - 0)
-* o 1*0 ~
ay, = @y 0.0 0 - )

N T
> ng;‘yff] : (A.14)

which we rewrite as

where
G VNTI, 0’
NT 0 T3/21y
N T
M M/
M _ G-l 1 ?*OG_l _ [ 11,NT 21,NT
NT [ NT;;g”g” NT Mo, vt Moo N1



1 L1 &
_ I, Ix
My nr = NZ ﬁZLtLt]
i=1 =1
1
/21,NT = { INT572 Zt 1t5” T5/2 Zt 1 —Nt }
1T
Moo Nt = ﬁzt] Iy
t=1
1 N 1 T Ix o oy
WZM {T D=1 Ty uit}
N T 1 T ;o4
- gl x| My NT | _ Wth tu,
MmNt = NTZZ%“Z%— m = .
i=1 t=1 =2,NT :

1 T 7 %
T372 Zt:l tuNt

Recall that a ‘4’ is used to denote a projection error, a ‘*’ denotes the deviation of an observation
plus its grand sample average from its time-series and cross-section average, and a ‘tilde’ denotes
the deviation of an observation from its time-series average.

The proof of proposition 5 makes use of the following lemmas.

Lemma 3 For each i as T — oo,

T 0 p
(a) % Zt 1 fit:x;tt* % Yoo Zhxy, — 0.

T T *
(b) T51/2 Et 1 t—ft* - ﬁ Et:l txy, o 0.

T p
(C) T Zt 1—3: Uy — %Zt:l zhuy — 0

Lemma 3 is useful because it gives us asymptotic justification for ignoring the fact that we are using
projection errors instead of the original observations.
Proof. First, observe that by direct calculation,

—f: = [—zt T Es 1Lis — % Zjvzl Ljy NT EJ 1 Es 1—75}
- [(I’i (&it - T Zs 1&1'5) - % Zj:l (&jt - T Zszl éjs)jl (A.15)
= i — [‘I’ Zit — Z] 1 —jtjl

(a) Using (A.15), we have,

T2 Zt 1—3:—3* = %Zle {Qrt - ((I)izit N Eg 1 (1)7 ]t):| {iﬁ - Zitq)/ N E] 1—7t )]
= Tl‘z ZtT:1 E‘kti%k: - le Et:l [‘I’iﬁit - N Ej:l ‘1’3‘27‘15 ifto
—f2 Yz [ZQ#I"' = 2 113;1"}
+7 Y [<I> RS DU JEMRER B SRR
= HEY il — Z0,(T) + £0,(1'?)
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(b) Also using (A.15), observe that

L. T5/2 Zt 1 —n = T5/2 Zt 1 [ [‘I’ iZit — N ZJ 1 —]tH
— * .
T5/2 Zt 1 txit - T5/2 Zt:l [‘I)liit

T51/2 ZtT:I O;D (TS/Q)

S DIREE JEM
= T5/2 Zt 1 —1t
.. 1 T *
ii. and >, zj, = 0.

T o T o«
It follows that zazz >, &}, = 787z 24y tL};-

(c) 7 Zt 1—3:*_T2t 1|:—zt (‘I’in szl th)}“t
= T Zt:l Tiug + Top(Tl/Q)

Lemma 4 As T — oo then N — oo,
(a) Myy Nt — g Yoy Quui = 0
(b) My nr =0

(¢) Moy N1 Iy

only examine

Proof.
0
Part (a). The i-th term in the sum is %Zle z!2t By lemma 3.a, we need

1 EtT 1 xjtgj: . Writing this term out yields

1 & 1, 1|1 1 & 1 |1 & 1L,
T_Z%t%t = ﬁ;%t%ﬁf TZ;LS TXQ T_Z N;zﬁ ﬁzlijt
t=1 = s= 5= t=1 Jj= j=

1 1 N T 1 N T .
7 |7 2u 2| |7 2u 2o
j=1s=1 j=1s=1
1 T 1 N T 1 N T
=DM EA E DB BEM R - DB BEIN F-
t=1 j=1s=1 j=1s=1
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where as T' — o0,
i Sl 2 [ BB
i |4 S 2] [+ S 2] 2 [ By [ B
i, A S, {— PPl 1%} [% PO 2}4 2 N2 S0 [ BB
iv. & {ﬁ Zjvzl Zleljs} {ﬁ Z;V:I 25212/7‘3} = [ j= . /B, } { j= . IB, }

v. % Zthl %t (L Zjv 1 Zz 1l3‘s> (L Zjv 1 ZZLI Ejs) i;t:|
2 By %X B + %50 [ By S B

vii 2 X [(FX2) (R w%)} + (o) (320 2]
_’fﬁm [NZ] 1.[—7JJ:| [ j= 1f—m} f—m

.. T D
vil. 72 P |Zit ( Y 1213) ( S ) n} =2[B, [ B,
T [ N N D

vitl: 7z Liy [2a (ﬁ Zi:lgﬁ) + (% 2= xﬁ) x;f} = % [ BB,

i &S0 [(32le) (2l Sz + (NL S e (R )]
2B [% Jlf_w}[ S By B
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x-%éflKizfﬁ%)@szgikgg+(ﬁfzﬁgjg%g(%zﬁﬁ¢ﬂ
_’2[ ]1f_vg}{ ]1f_vg}

This establishes that for fixed N as T'— oo, M N7 A Mi1,n, where

S [k o [ [5S ] [45 fa]

Now observing that as N — oo,
A X BBl — gy X Qi 2 0
ii. % vaﬂ fﬁmﬁgz o SLN sz\; Qoo =
i (42N S B (F 20 Bl) 20

It follows that My n — 6LN Zfil Qo 20as N — oo.

Miin =

Part (b). By lemma 3. b we examine

\/—T5/2 Zt tay = \/—T5/2 Zt 11y — N3/2 ZJ 1 [T3/2 Z] 1 —]t:|
- [TZ Zt 1 } [Ta/z Zil Lis } [Tz Zt 1 } [Ns/z Ejvzl (% Z;F:l Ejs)}
f%ﬁhf_m LB, -+XN, (B QJ%M

This establishes that [Mb; yr]. L My, ] where [M21,NT]i = e ST izl is the i—the

column of the matrix My, v, , and

sl =|(fr ) A5 (o4 )

=1
Now as N — oo, [Mj,; y]. = 0.

Part (c). is obvious.

Lemma 5

D
(a) For fized N, as T — oo, my yp — myy where

N-1] 1 &
)N = |:T:| \/_N; Quu,z Ey]dW NON(l)
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(b) As T — oo then N — oo, V;,l/QmLN A N(0,I) where V= 6LN Zivzl Qi Qi

(¢) As T — oo and N — 00, my y7 and m, yp are independent.

Proof. Part (a). By lemma 3.b, we examine the limiting behavior of

1 T 1 T 1 T 1 N 1 N T
T;ﬁtuz} = TZ L’t—TZ%s—ﬁZijﬂrﬁZZ%s

where
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i % Zf:l Lt Uit g \/ Qlu,j fﬁdeuz
i T N D N
- % Zt:l N EJ 1 _7t:| |:_ Zj:l ujt} - le j=1 Qlu ,J f B qu]

i, 00 [ 2w [ wie] 21 Buly/Qh, W)

i T | N T N T D N
ol %Zt:1 —ﬁ Ej:l Eszll‘js} {ﬁ Ej:l 2521 ujs:| - [% Z] 1—U7:| |:N EJ 1 uu gWuJ( ):|

T [ N D /-
T D Lt % 21 th} — Y=L [B i dWy

<

vi. % Zf:l Lit _% Zf:l ui3:| g [fﬁvl] uu JWul( )

I T I N T N
Vi % Zt:l zit _ﬁ Zj:l Zs:l u]5:| fﬁm [% Zj:l uu ]W“]( ):|

e [ | D \/ QT
VIil. %ZtT:l % Zjvzl Ljg | Wit — 1\;"“ medWm

; T | N 1 T D N
1 %thl _% ijl zjt_ [% Zt:l Uis:| - [% Zj:l fﬁvj:| Qlu ]Wuz( )

»

AL [FEe [fr L S ] 2 [F e [+ 52 el w o)

xl. %23;1 _% 23:1 L’s Uit —> fB |:\/ Wug :|

Xil. %Zthl % 23:1 Lis | [% Zjvzl ujt} A Uﬁvi} [% Zjvzl ouWw( )}

T | T ] N T D N
Xl Y, % PRy Ly | {ﬁ D jm1 Dos—1 Ujs} = [/ By {% > im1 uwWw( )}
. T T
v %thl _NT 27 1 Es l—JS} Uit - {_ j=1 f—vy} uu JWuz( )
T | N T T N
X 1 Y ﬁ 2 2521%5} {% 2521%} - { j= lf—vy} {% 2 =1 uquuJ( )}

' T N T T D N
LU DYIRNL . DINED Dl Ejt} {% Dt Uz‘s} = [% >t fﬁw} VOl Wi (1)

It follows that

%iziu;‘t D, [(N } W/B dWm+NQZM/B AW,
[ vl [ 2] |5 S0
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N Z/—UJ N% Y, Quu,JWuJ‘(l)

Summing over ¢ and dividing the result by v/ IV gives,

[N—l

N N
1 1 Z B w
N }_\/N ;; Qu“’i/—de” "~ N3/2 Pt Qu“’i/—“j wi(1)

which establishes part (a).
Part (b). Is established along the lines of the proof to lemma 2 and is omitted.

Part (c). We first show for the i-th element of my y7, for fixed N as T' — oo,

N

1 - . D 1 1 1
572 Ztuit =/l (/rdWm- - 5Wm-(1)> - ¥ (/rdwuj - §Wuj(1)>

Jj=1

For fixed N, as T — oo,
T ;4 T " T
% Do tuy = ﬁ E;f:l tug, — [TH] ﬁ D1 Uit
= ﬁ Do tugy
which we obtain since % ZZ;I uy, = 0. It follows that
ﬁ Ethl tuj, = ﬁ E? 1 tuie — % Z? 1 [L Z;vﬂ “jt} - [ﬁ 23:1 t] [% 23:1 “iS]
T3/2 Et 1 [ 27 1 Zs 1 U7s}
/ N
- Qlu 7 [f rdWUi - %WUZ( - N Zj:l Qlu,j [.f TdWU«j - %Wuj(l)}

The asymptotic independence between m; yr and my yp as T — oo then N — o0 is established
along the lines of the proof to proposition 4.a.

Proposition 5 (Sequential limit distribution.) For the panel DOLS estimator (17), as T — oo
then N — oo,

a. VNT(

- 1 = —1
b. CN1/2\/NT(1NT _l) 2 N(0,Ix), where Cy = (011\7/2)(0}\{2)/ = M11,NV11,NM11,Na
M N = g Zil Quvi, and Viin = 5% Zil Qo Qoo j-

Vg — ) and T3/2(iN — Ay) are independent.

S p =N . —1 \7 —1 _ 1 N 1 T /
¢. Dn7—Cy = 0 where Dyr = My yoVii,NtMyy ypys Mit,NT = 55 Doimh |77 2oim1 ZieZi | »

ViinT = SLN D1 v Quayi [% doie1 L-tzgt} , and Quy; s a consistent estimator of Q.-
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Proof of proposition 5.

Part (a). Follows directly from lemma 4 and lemma 5.c.
Part (b). Follows directly from lemma 4 and lemma 5.b.
Part (c). Is obvious.

C. Money demand study data

Our data consists of annual time series observations from 1957 through 1996 for the following
19 countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Great
Britain, Iceland, Ireland, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland,
and The United States. The composition of the sample was determined by data availability. Our
measure of money is from the IFS (line code 34) for all countries except for Great Britain where we
used M0O. The definition of money from the IFS is the sum of transferable deposits and currency
outside banks. Price levels for all countries are measured using the CPI from the IFS (line code 64).

IFS annual real GDP data (line code 99B) are used for all countries with the following exceptions:
The June 1998 IFS CD-ROM reports only nominal GDP for Austria from 1957-1963, for Finland
and Iceland from 1957-1959, and Portugal from 1957-1964. For these countries we generated our
own measure of real GDP for the early part of the sample by deflating nominal GDP with the CPI.
The June 1998 IFS CD-ROM reports real GDP for Germany only from 1979-1996. To obtain a
complete series, we spliced this series to real GDP from 1960 to 1978 reported in the 1992 OECD
Main Economic Indicators. For the period 1957 to 1959, we deflated nominal GDP by the CPI.

Interest Rate Availability
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Country Interest Rate Source Dates

Australia 13 Week T-Bill IFS 1969-1996
Austria Call Money IFS 1967-1996
Belgium Call Money IFS 1957-1996
Canada 30 day Prime Corp. Paper IFS 1957-1996
Denmark Call Money IFS 1972-1996
Finland Call Money OECD 1976-1996
France Call Money IFS 1964-1996
Germany Call Money IFS 1960-1996
Iceland 3 Month Time Deposit IFS 1976-1996
Ireland Deposit Rate IFS 1962-1996
Japan Call Money IFS 1957-1996
Netherlands  Call Money IFS 1960-1996
New Zealand Call Money OECD 1973-1996
Norway Call Money IFS 1971-1996
Portugal Call Money IFS 1983-1996
Spain Call Money IFS 1974-1996
Switzerland Call Money OECD 1975-1996
U.s. 3 Month T-Bill NBER 1957-1996
UK. 3 Month T-Bill IFS 1957-1996

The availability of short term interest rates is given in the table. Interest rates are available over
the entire 1957-1996 period only for the U.S., U.K., Belgium, Canada, and Japan. For the other
countries, we estimated interest rates in the early part of the sample by covered interest parity with
the U.S. for those countries with forward exchange rates, and uncovered interest parity for those that
did not have forward currency trading. Since most of the missing data occurs during the Bretton
Woods system of fixed exchange rates, the difference between uncovered interest parity and covered
interest parity is pretty small.

C1l. Money demand study point estimates

Here, we display in graphical form, the single-equation DOLS and panel DOLS point estimates over

the full sample and recursive estimates.
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Figure 2: Single equation DOLS and Panel DOLS estimates of long-run money demand, with linear
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Figure 4: Recursive Single-Equation DOLS Interest Semi-Elasticity Estimates, No Trend
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Figure 5: Recursive Single-Equation DOLS Income Elasticity Estimates, With Trend
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Figure 6: Recursive Single-Equation DOLS Interest Semi-Elasticity Estimates, With Trend
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