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Abstract

LSDV estimation of the dominant root in dynamic panel regression is vulnerable to downward
bias. This paper studies recursive mean adjustment (RMA) as a bias reduction strategy. We
develop the RMA estimators for general AR(p) process under both cross sectional independence
and dependence. We study its asymptotic properties as N;T !1 jointly and �nd that the pro-
posed asymptotically normal estimator exhibits nearly negligible bias when

�
log2 T

�
(N=T ) ! �

where � is a non-zero constant. The proposed method is an e¢ cient and e¤ective bias reduction
strategy and is straightforward to implement. Our simulation experiments suggest that the RMA
estimator performs quite well in terms of bias, variance and MSE reduction both when error terms
are cross sectionally independent and correlated. It dominates comparable estimators particularly
when T is small and/or the underlying process is highly persistent.
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1 Introduction

In small T samples, accurate estimation of the autocorrelation coe¢ cient � 2 [0; 1); of a stationary but
persistent �rst-order autoregressive time series yit = �i+ �yit�1+ �it; �it

iid� (0; �2i ); must account for
downward bias induced by running the regression with a constant. To see the source of this bias, think
of running least squares without a constant on deviations from the sample mean yit � T�1

PT
t=1 yit.

Then for any observation t = 1; :::; T , the regression error �it is correlated with current and future
values of yit embedded in the sample mean component of the explanatory variable.1 This small
T bias is also present in �xed-e¤ects estimators for panel data due to the incidental parameters
problem. For �xed T as N ! 1; Nickell (1981) shows that the least squares dummy variable
(LSDV) estimator for the dynamic panel regression model remains substantially downward biased.

In this paper, we study and apply the recursive-mean adjustment (RMA) technique to estimate
linear dynamic panel data models under cross-sectional homogeneity of the dominant root. The
paper builds on the success of RMA to reduce bias in the regression context.2 In the RMA strategy,
the observations are adjusted by the common recursive mean, (t � 1)�1

Pt�1
j=1 yij instead of the

sample mean.3 Because the recursive mean does not contain future values of yit; the adjusted
regressor (yi;t�1� 1

(t�1)
Pt�1
j=1 yij) is orthogonal to the original regression error (�it) and hence reduces

substantively the bias for the �xed e¤ect.4

We �rst develop the RMA strategy for general AR(p) processes under cross-sectionally indepen-
dent observations and under cross-sectional dependence. We also consider estimation of dynamic
panels with exogenous variables. As in Alvarez and Arellano (2003), Bai (2004) and Hahn and
Kuersteiner (2002), our asymptotic analysis is based on large T and large N .5 We then carry out a
series of Monte Carlo experiments to evaluate the precision and e¤ectiveness of the RMA estimator
in reducing bias and the accuracy of the asymptotic theory for small T and moderate N sample
sizes. When the observations are independent, the pooled RMA estimator is shown to deliver e¤ec-
tive bias reduction. When the observations are cross-sectionally correlated and the dependence is
generated by an underlying factor structure, we �nd that the RMA estimator also performs quite
well particularly when T is small and/or � is close to unity.

The remainder of the paper is organized as follows. Section 2 develops and discusses asymptotic
properties of the panel RMA estimators under cross-sectionally independent observations. In section

1Mariott and Pope (1954) and Kendall (1954) discuss and characterize the �rst-order approximation of this bias.
Several bias correction strategies have been suggested in the literature, such as median unbiased estimation [Andrews
(1993)], approximately median unbiased estimation [Andrews and Chen (1994)] and mean unbiased estimation [Phillips
and Sul (2007)].

2The RMA strategy was applied to reduce bias in regression by So and Shin (1999a) and in the context of unit root
testing by So and Shin (1999b, 2002).

3The commonality refers to the fact that the identical recursive mean is subtracted from both dependent and
independent variables.

4As illustrated below, since the error term after the RMA adjustment now contains �(1 � �) 1
(t�1)

Pt�1
j=1 yij which

is correlated with the adjusted regressor, one can obtain an unbiased control for the �xed e¤ect if � = 1.
5Other research that has addressed the bias in dynamic panel data estimation include Phillips and Sul (2007) and

Sul (2007). Phillips and Sul study the mean unbiased estimator for the panel AR(1) model with cross-sectionally
dependent observations, whereas Sul applies the RMA method to construct panel unit root tests for �xed N and large
T:
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3, we extend the asymptotic analysis to an environment with cross-sectionally correlated observations.
Section 4 reports the results of Monte Carlo experiments that compare performance across alternative
estimators. Section 5 concludes. The Appendix contains proofs and details of many arguments made
in the text.

2 Asymptotic Properties Under Cross-Sectional Independence

In this section, we consider observations in dynamic panel data with individual-speci�c �xed e¤ects.
Section 2.2 considers dynamic panels with exogenous regressors. Here, we begin with the panel p-th
order autoregression.

2.1 Panel AR(p)

The data are assumed to be generated by the latent model in

Assumption 1 For i = 1; : : : N; t = 1; : : : T; the observations fyitg have the latent model structure

yit = �i + zit; (1)

zit =

pX
j=1

�jzi;t�j + �it; (2)

where
���Pp

j=1 �j

��� = j�j < 1; �i
iid�
�
�; �2�

�
, yi0

iid�
�
0; �2i =

�
1� �2

��
; and �it

iid�
�
0; �2i

�
is independent

of �i and yi0; and has �nite moments up to the fourth order.
6

The latent model formulation (1)-(2) has the observationally equivalent regression representation

yit = �i (1� �) +
pX
j=1

�jyit�j + �it; (3)

with initial observation yi0 = �i + zi0: Since most economic time series are positively serially
correlated, we assume that � =

Pp
j=1 �j 2 [0; 1): On occasion, it will be useful to recast (3) in the

following augmented Dickey-Fuller (ADF) form

yit = ai + �yit�1 +

p�1X
j=1

�j�yit�j + �it: (4)

2.1.1 The AR(1) environment

A widely studied environment for dynamic panel data estimators sets p = 1 in Assumption 1,

yit = ai + �yi;t�1 + �it; (5)

6The independence and fourth-moment restrictions were also imposed by Alvarez and Arellano (2003).
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where ai = (1� �)�i with �it
iid� (0; �2i ):

LSDV estimation of the panel AR(1) model is equivalent to estimating yit�yiT = � (yit�1 � yiT )+
eit by least squares without a constant. Notice that the observations are deviations from the sample
mean yiT = T�1

PT
j=1 yij and the regression error is eit = �it + ai � (1� �)yiT : For � 2 [0; 1), �xed

T as N !1; Nickell (1981) shows that the LSDV estimator is downward biased due to the positive
correlation between �it and current and future values of yit contained in the yiT�1 component of the
regressor.

The panel RMA estimator in the AR(1) case can be obtained as follows. First, form the recursive
mean cit�1 = (t � 1)�1

Pt�1
j=1 yij and form the adjusted variables (yit � cit�1) and (yit�1 � cit�1) to

run pooled least-squares without a constant on

(yit � cit�1) = � (yit�1 � cit�1) + eit; (6)

where eit = �it+(1� �)�i� (1��)cit�1 = �it� (1� �) (t� 1)�1
Pt�1
j=1 zij and zit is given in (2): The

RMA estimator for � is

�̂RMA =

PN
i=1

PT
t=2 (yit�1 � cit�1) (yit � cit�1)PN
i=1

PT
t=2 (yit�1 � cit�1)

2
: (7)

Estimates of the individual-speci�c e¤ects are then given by bai = T�1
PT
t=1(yit � �̂RMAyit�1).

It is worth noting that RMA is able to control for the individual-speci�c e¤ect because E(1 �
�)cit�1 = �i especially when � = 1. The central insight of this strategy is that the adjusted regressor
(yit�1 � cit�1) is orthogonal to the original error term (�it) because the recursive mean contains
observations only up through date t� 1. When � < 1, a correlation still exists between the adjusted
regressor (yit�1�cit�1) and the new error term (�it�(1� �) (t� 1)�1

Pt�1
j=1 zij) via cit�1 and

Pt�1
j=1 zij ,

but RMA adjustment reduces the resulting bias substantively. Since it is the identical recursive
mean cit�1 that is subtracted from both yit and yit�1; the estimator is more precisely described as
the �common�RMA estimator. For the ease of exposition, however, we will drop the term �common�
and simply refer to the RMA estimator throughout the paper. The asymptotic properties of the
estimator are stated in

Proposition 1 (Asymptotic distribution in the AR(1) model with �xed e¤ects) Let the observations
be generated by Assumption 1 with p = 1:

(i) If
�
log2 T

�
(N=T )! � as T;N !1, then �̂RMA is asymptotically distributed as

p
NT (�̂RMA � ��B (�; T ))!d N

�
0; 1� �2

�
; (8)
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where

B (�; T ) � � (1� �) C (�; T )
D (�; T )

> 0; C (�; T ) =
T�1X
t=1

t�1

(
2t�1

t�1X
h=1

h
(z)
h �

t�1X
h=1


(z)
h

)
;

D (�; T ) = (T � 1) (z)0 �
T�1X
t=1

t�1f(z)0 � 2t�1
t�1X
h=1

h
(z)
h g;

and (z)h is the covariance between zit and zit+h:

(ii) If
�
log2 T

�
(N=T )! 0 as T;N !1; then �̂RMA is asymptotically distributed as

p
NT (�̂RMA � �)!d N

�
0; 1� �2

�
: (9)

The proof of Proposition 1 is presented in the Appendix. Whereas Alvarez and Arellano (2003) show
that LSDV is consistent if N=T ! 0 as T;N ! 1; consistency of �̂RMA requires log T

p
N=T ! 0

because the bias term B (�; T ) is O
�
log T
T

�
: However, the actual bias of �̂RMA turns out to be so

small that it can be ignored in practice. To see this, consider the explicit formula of the bias for
�xed T as N !1,

B(�; T ) � plimN!1 (�̂RMA � �) =

PT
t=2

h
�
t�1

�
1 + �t�2 � 2

n
1+�
t�1

on
1��t�1
1��2

o�i
(T � 1)�

PT
t=2

h
1
t�1

�
1� 2�t�11�� + 2

n
�
t�1

on
1��t�1
(1��)2

o�i � 0:
Figure 1 shows the value of the bias B (�; T ) for various � and T: The maximum bias is 0.028 which
occurs at T = 13 and � = 0:46: In addition, the bias gets smaller as � is closer to unity as predicted.

There are two special cases where �̂RMA is exactly unbiased for �xed T as N !1: The �rst case
is when � = 1: Here, it can be seen from (6) that eit = �it which implies E(yit�1�it) = E(cit�1�it) = 0:
The second case is when T = 3 for any � 2 [0; 1): In this case,

B (�; 3) = � (1� �)
E
�
(yi1 � yi1) yi1 +

�
yi2 � 1

2 fyi1 + yi2g
�
1
2 fyi1 + yi2g

�
E
h
(yi1 � yi1)2 y2i1 +

�
yi2 � 1

2 fyi1 + yi2g
�2i

= � (1� �)
E
�
y2i2 � y2i1

�
E
h
(yi2 � yi1)2

i = 0;
because E

�
z2i2
�
=E
�
z2i1
�
by the covariance stationarity of yit: Generally speaking, since the bias is so

small, it is fair to say that �̂RMA is approximately consistent when N is much larger than T:
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Figure 1: Asymptotic bias of RMA estimator under AR(1) and independence

2.1.2 The AR(p) environment

Accurate measurement of higher-order autoregressive terms is vital in many applied problems such as
half-life estimation from impulse responses. In extending the model to the general AR(p) structure,
we refer to the augmented Dickey�Fuller form of the regression (4) and employ the RMA strategy
to obtain bias-corrected estimates of the �j coe¢ cients as well as �. Estimation proceeds in three
steps as follows.

Step 1: Estimate (4) by LSDV and call the estimated coe¢ cients on the lagged di¤erences �̂j;LSDV:

Let y+it = yit �
Pp�1
j=1 �̂j;LSDV�yit�j and �

+
it = �it +

Pp�1
j=1

�
�j � �̂j;LSDV

�
�yit�j : Then (4) can be

rewritten as
y+it = ai + �yit�1 + �

+
it : (10)

Step 2: The RMA estimator for �, �̂pRMA, is then obtained from running a pooled least-squares
regression on �

y+it � cit�1
�
= � (yit�1 � cit�1) + eit;

where cit�1 = (t�1)�1
Pt�1
s=1 yis and eit = � (1� �) (t� 1)

�1Pt�1
s=1 zis +�it +

Pp�1
j=1

�
�j � �̂j;LSDV

�
�zit�j .

Step 3: The LSDV estimator �̂j;LSDV from step 1 is biased by O
�
T�1

�
: This bias can be reduced
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by treating �̂pRMA as the true value of � and running a second LSDV regression on

�
yit � �̂pRMAyit�1

�
= ai +

p�1X
j=1

�j�yit�j + e
p
it; (11)

where epit = �it +
�
�� �̂pRMA

�
yit�1: Call the resulting estimator �̂

p

j;RMA: �

The asymptotic distribution of �̂pRMA and �̂
p

j;RMA are given in,

Proposition 2: (Asymptotic Distribution in the AR(p) model with �xed e¤ects). Let the observa-
tions be generated by Assumption 1.

(i) If N !1 for �xed T; then the asymptotic bias of �̂pRMA and �̂
p

j;RMA are

plimN!1
�
�̂pRMA � �

�
= B (�; T ) +O

�
T�2

�
; (12)

plimN!1
�
�̂
p

j;RMA � �j
�

=
1

2
B (�; T ) +O

�
T�2

�
; (13)

where B (�; T ) is given in Proposition 1.

(ii) If
�
log2 T

�
(N=T )! � as T;N !1,

p
NT

�
�̂pRMA � ��B (�; T )

�
!d N

�
0; 1� �2

�
:

The proof of Proposition 2 is presented in the Appendix. Note that estimation in step 3 reduces
the O(T�1) bias in �̂j;LSDV to O(T

�2) if B (�; T ) is small and can be ignored. These estimators
have trivial N�asymptotic bias for relatively large values of �: The asymptotic bias of �̂pRMA is only
slightly larger than it is under the AR(1) case.

2.2 Panel AR(p) with exogenous regressor

We now consider dynamic panel data regressions with exogenous regressors. The observations are
generated according to

Assumption 2. For i = 1; : : : N; t = 1; : : : T; the observations fyitg have the latent model structure

yit = �i + �wit + zit; (14)

zit = �zit�1 +

p�1X
j=1

�j�zit�j + �
�
it; (15)

��it = qit + �it; (16)
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where wit and qit are econometrically exogenous to yit; j�j < 1; �i
iid�
�
�; �2�

�
; and �it

iid�
�
0; �2i

�
:

The latent form (14)-(16) has the observationally equivalent dynamic panel regression represen-
tation,

yit = ai + �yit�1 +

p�1X
j=1

�j�yit�j + �wit +

p�1X
j=1

�j�wit�j + qit + �it: (17)

Balestra and Nerlove (1966) emphasize di¤erent roles of two exogenous variables: wit as a level e¤ect
and qit as a di¤erence e¤ect. In their empirical example, yit is the quantity of natural gas, wit is per
capita income, and qit is the relative price of natural gas. Per capita income a¤ects gas demand in
levels but the relative price a¤ects gas demand in the ���di¤erence.�

Phillips and Sul (2007) show that for �xed T as N !1 the LSDV estimator for � is consistent
but E (�̂LSDV � �) = O

�
T�1

�
such that the LSDV estimators of the coe¢ cients on the lagged wit

variables are biased. In general, the parameters of interest are �; ; and �: However, when the
observations are cross-sectionally correlated, as is discussed in the next section, the methods used to
control for cross-sectional dependence are sensitive to bias in the estimated covariance matrix which
in turn is sensitive to bias in the �j coe¢ cients. Therefore, our treatment of the RMA estimator
here pertains to obtaining bias attenuation in the estimation of all the coe¢ cients in (17). The RMA
estimator is obtained as follows:

Step 1: Estimate (17) by LSDV and call the estimated coe¢ cients �̂LSDV; �̂j;LSDV; �̂j;LSDV: Let y
+
it =

yit �
Pp�1
j=1 �̂j;LSDV�yit�j ��̂LSDVwit �

Pp�1
j=1 �̂j;LSDV�wit�j and �

+
it = �it +

Pp�1
j=1

�
�j � �̂j;LSDV

�
�yit�j

+
�
� � �̂LSDV

�
wit +

Pp�1
j=1 (�j � �̂j;LSDV)�wit�j : Note that (17) can be rewritten as

y+it = ai + �yit�1 + �
+
it :

Step 2. Let cit�1 = (t� 1)�1
Pt�1
s=1 yis and run pooled least-squares on�
y+it � cit�1

�
= � (yit�1 � cit�1) + eit;

which gives �̂pRMA; the RMA estimator of �.

Step 3. Treat �̂pRMA as the true value of � and run LSDV on

yit � �̂pRMAyit�1 = ai +

p�1X
j=1

�j�yit�j + �wit +

p�1X
j=1

�j�wit�j + e
p
it: (18)

If the regression contains only the level e¤ect ( = 0), then stop. If a di¤erence e¤ect is present,

then proceed to
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Step 4. Let y++it = yit� �̂pRMAyit�1�
Pp�1
j=1 �̂j;RMA�yit�j + �̂RMAwit+

Pp�1
j=1 �̂j;RMA�wit�j and run

LSDV on

y++it = ai + qit + �
p
it;

which gives ̂RMA; the RMA estimator for :�

It is straightforward to show that Proposition 2 holds for �̂pRMA and �̂
p

j;RMA: With regard to
̂RMA; we note that

�pit = �it+
�
�� �̂pRMA

�
yit�1+

p�1X
j=1

�
�j � �̂j;LSDV

�
�yit�j+

�
� � �̂LSDV

�
wit+

p�1X
j=1

(�j � �̂j;LSDV)�wit�j :

Also, note that for large N and T;

�
�� �̂pRMA

� 1p
NT

NX
i=1

TX
t=1

~qit~yit�1 = Op

�
1p
NT

+
log T

T

�
Op (1) ;

�
�j � �̂j;LSDV

� 1p
NT

NX
i=1

TX
t=1

~qit�~yit�1 = Op

�
1p
NT

+
log T

T

�
Op (1) ;

�
� � �̂LSDV

� 1p
NT

NX
i=1

TX
t=1

~qit ~wit = Op

�
1p
NT

�
Op (1) = Op

�
1

NT

�
;

(�j � �̂j;LSDV)
1p
NT

NX
i=1

TX
t=1

~qit� ~wit�1 = Op

�
1p
NT

+
log T

T

�
Op (1) ;

where the a¢ x notation �~xt�signi�es that the series xt has been demeaned. It follows that

p
NT (̂RMA � ) =

1p
NT

PN
i=1

PT
t=1 ~qit~�

p
it

1
NT

PN
i=1

PT
t=1 ~q

2
it

= Op

�
1p
NT

+
log T

T

�
+

1p
NT

PN
i=1

PT
t=1 ~qit�it

1
NT

PN
i=1

PT
t=1 ~q

2
it

:

As N;T !1, p
TN (̂RMA � )!d N

�
0; �2

�
:

3 Asymptotic Properties with cross-sectionally correlated observa-
tions

In most panel data environments, observations will be correlated across individuals. To maintain
clarity and to avoid a proliferation of notation, we assume that the cross-sectional correlation of the
regression error has a single factor representation. The results obtained here under the single-factor
representation carry over to multi-factor environments at a cost of additional notational burden.
The environment under consideration is again the one in which observations are weakly stationary.
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In addition to dependence on past values, the idiosyncratic component �it and individual-speci�c
�xed e¤ects, however, yit now may be hit by a common factor �t:7 The observations are generated
according to

Assumption 3 For i = 1; : : : N; t = 1; : : : T; the observations fyitg have the latent model structure

yit = �i + zit; (19)

zit =

pX
j=1

�jzi;t�j + uit; (20)

uit = �i�t + �it; (21)

where the vector of idiosyncratic errors �= (�01; : : : ; �
0
N )

0 and �0i = (�i1; : : : ; �iT )
0 have E(�) = 0,

E(��0) = �� = diag[�2�;1; : : : �
2
�;N ]; Ej�j

8 � M < 1; E (�0s�t=N) = N (s; t) ; jN (s; s)j � M for all s,

and T�1
PT
s=1

PT
t=1 jN (s; t)j �M: The common factor has E k�tk4 <1; plimT!1T�1

PT
t=1 �

2
t =

�2�; with factor loadings k�ik � D < 1; and plimN!1
�0�=N �D

 = 0 for some D > 0; where
�= (�1;:::; �N )

0 :

The above latent model representation can be recast to the common factor representation

yit = �i + �iFt + xit; (22)

where Ft =
P1
j=0 �

j�t�j is the serially correlated common factor component and xit =
P1
j=0 �

j�it�j
is the serially correlated but cross-sectionally independent idiosyncratic component. Since the error-
covariance matrix is characterized by 2N unknowns, the feasibility condition for implementing a
generalized least squares (GLS) correction is T > 4:8

To derive the exact bias formulae under cross-sectionally correlated yit, we introduce the following
notation. Let

�̂F,LSDV = �+

PT
t=2

�
Ft�1 � �Ft�1

� �
�t � ��

�PT
t=2

�
Ft�1 � �Ft�1

�2 (23)

be the LSDV estimator of � from the regression of Ft = k + �Ft�1 + �t where �Ft�1 = (t �
1)�1

Pt�1
j=1 Ft�j , and let

�̂F,RMA = �+

PT
t=2

�
Ft�1 � �Ft�1

� �
�t � (1� �) �Ft�1

�PT
t=2

�
Ft�1 � �Ft�1

�2 ; (24)

be the RMA estimator from Ft � �Ft�1 = �
�
Ft�1 � �Ft�1

�
+ "t where "t = �t � (1� �) �Ft�1. Let

�̂LSDVjCSD and �̂RMAjCSD respectively denote the LSDV and RMA estimators applied to the cross-

7The factor structure has been employed by Bai and Ng (2002), Moon and Perron (2004) and Phillips and Sul
(2003).

8 Including the lagged dependent variable and the �xed e¤ects further reduces the degrees of freedom by 2 in the panel
AR(1) model. In a K�factor environment, for instance, there are (K + 1)N unknowns and the feasibility condition is
T > K + 3 in the panel AR(1) model.
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sectionally correlated data. With these de�nitions in hand, we can now characterize theN�asymptotic
bias of the RMA and LSDV estimators when they are applied to observations where the error term
is governed by a single-factor structure.

Proposition 3: (N�asymptotic bias under cross-sectional dependence). Under Assumption 3 for
�xed T as N !1;

plimN!1(�̂LSDVjCSD � �) = (1� �)
�
� (1 + �)

T

�
+ �
�
�̂F,LSDV � �

�| {z }
(23)

+ op
�
T�1

�
; (25)

plimN!1
�
�̂RMAjCSD � �

�
= (1� �)B (�; T ) + �

�
�̂F,RMA � �

�| {z }
(24)

+ op
�
T�1

�
; (26)

where � � m2
��
2
�

�
�2 +m2

��
2
�

��1 2 [0; 1] captures the degree of cross-sectional dependence, m2
� =

N�1PN �2i ; �2� = T�1
PT
t=1 �

2
t ; �2 = N�1T�1

PN
i=1

PT
t=1 �

2
it, and B(�; T ) is given in Proposition

1.

Since the terms
�
�̂F,LSDV � �

�
and

�
�̂F,RMA � �

�
depend on the realization of the common factors

�t as seen from (23) and (24) and they are random for �nite T; we say that �̂LSDVjCSD and �̂RMAjCSD
exhibit random N�asymptotic bias. The random bias of �̂RMAjCSD attributable to

�
�̂F,RMA � �

�
is not troublesome because E

�
�̂F,RMA � �

�
is inconsequential as shown by So and Shin (1999b).

Consequently, the total bias in �̂RMAjCSD is small even when the yits are perfectly cross-sectionally
correlated (� = 1). When � = 0; the limiting values are not random since they do not depend on the
factor �t. In this case, the op

�
T�1

�
term in (25) and (26) becomes O

�
T�2

�
in Proposition 3.

In light of the random asymptotic bias, it may be instructive to show their mean values. Taking
expectations of the expressions in Proposition 3 with noting that E

�
�̂F,OLS � �

�
= � (1 + 3�) =T

and that E
�
�̂F,RMA � �

�
�B (�; T ) is a tiny negative number, this yields

E(�̂LSDVjCSD � �) = �1 + �
T

� �2�
T
+O

�
T�2

�
;

E
�
�̂RMAjCSD � �

�
= B (�; T )� �

�
B (�; T )� E

�
�̂F,RMA � �

��
< B (�; T ) :

Somewhat surprisingly, �̂RMAjCSD has lower mean bias than that of �̂RMA under independence.
This suggests that the performance of the feasible GLS estimator will be enhanced if RMA residuals
are used to estimate the error covariance matrix because it is less biased than the other estimators
under consideration.

4 Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments to examine the precision and the e¤ectiveness
of bias reduction achieved by the RMA estimators in small T and moderate N samples for � 2 [0; 1):
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We vary the environments by the autoregressive order and by the degree of cross-sectional depen-
dence. For the economy of exposition, we are selective in tabulating the simulation results especially
when log T (N=T ) is relatively large because in this case B (�; T ) (and therefore the asymptotic bias)
remains in the distribution of the RMA estimator. Further details of the simulation results are avail-
able at the author�s web site.9 We consider the following four cases for the simulation experiments.

Case 1: AR(1) with cross-sectionally independent observations. For this widely studied environ-
ment, several bias reduction methods have been proposed. We compare two of these to the RMA
estimator together with LSDV. The �rst is a GMM estimator studied by Arellano and Bover (1995,
hereafter AB) and the other is proposed by Hahn and Kuersteiner (2002, hereafter HK). The data
generating process is,

yit = �i + zit;

zit = �zit�1 + �it;

where �it
iid� N (0; 1); �i

iid� N
�
1; �2�

�
: As in Assumption 1, the initial observation obeys yi1 =

�i+ zi1
iid� N

�
1; �2� +

1
1��2

�
, which produces weakly stationary sequences of yit:We consider sample

sizes of N 2 f50; 100; 200g and T 2 f6; 11; 21g so that the total sample size used in the regression is
T0 = T � 1 2 f5; 10; 20g.

The asymptotic variance of the AB estimator depends on the nuisance parameter of  = ��=�� =

1=��, whereas the variances of RMA, LSDV, and HK do not. To explore the potential small-
sample dependence of the AB estimator on the variability of the individual-speci�c e¤ect, we consider
alternative values of relative variance of the individual-speci�c component of the error term, �� 2
f1; 5; 10g, or  2 f1; 0:2; 0:1g:

Table 1 reports the bias and mean-square error of the four estimators under comparison. The
RMA and AB estimators are seen to be upward biased while LSDV and HK are biased downward.
RMA compares well to HK for small T . Although the relative performance of HK improves as T
grows, when T0 = 5, for example, the HK estimator bears substantial downward bias (�0:22 for
� = 0:9) even when N is as large as 200. For relatively large T , the performance of HK is comparable
to that of RMA particularly when � is relatively small. The GMM estimator due to AB performs
well for  = 1, but its performance deteriorates substantively for  = 0:2 and  = 0:1. Even for
 = 1, it is dominated by RMA for moderate values of �. In sum, RMA dominates HK both in
terms of attenuating bias and in precision for small T and it is typically more precise than AB, whose
performance is quite sensitive to  : The dominance of RMA over HK is particularly noticeable for
small T or for highly persistent � when T is relatively large.

Case 2: AR(2) with cross-sectionally independent observations. Since it is not straightforward to
correct for bias with HK or AB in the AR(2) case, we only report the performance results for RMA

9Full reports (MS excel format) are available at http://homes.eco.auckland.ac.nz/dsul013/working/MC_RMA.xls
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in comparison to LSDV. For simplicity but without loss of generality, the DGP for this case is

yit = �i + zit;

zit = �1zit�1 + �2zit�2 + �it;

where �it
iid� N(0; 1); �i

iid� N
�
0; �2�

�
. We consider the lag coe¢ cients (�; �2) 2 f(0:9; 0:2); (0:5; 0:2);

(0:9; 0:3); (0:5; 0:3); (0:9; 0:4); (0:5; 0:4)g where � = �1 + �2. Here we report the results for (�; �2) 2
f(0:9; 0:2); (0:5; 0:2)g only because the results of the other cases are largely similar.

Table 2 reports the bias, variance and mean-square error of RMA and LSDV. We note that the
bias of LSDV in the AR(2) case is much more serious than that in AR(1) environment. For example,
when � = 0:9 and N = 50, the LSDV bias for � is -0.62, -0.32, -0.16 for T0 = 5; 10; and 20 respectively
whereas the biases were -0.47, -0.25, and -0.12 for the corresponding values of T0 in AR(1) case. As in
AR(1) case, the bias hinges upon T rather than N . Although the variance of RMA is slightly larger
than that of LSDV, the MSE of RMA is consistently much smaller than that of LSDV estimator.

Case 3: AR(1) and AR(2) with exogenous regressor. Since Phillips and Sul (2007) show that �̂LSDV
is asymptotically unbiased when the exogenous variable enters with a level e¤ect, we concentrate on
the following DGP that allows an exogenous variable to enter in di¤erence form,

yit = �i + zit;

zit = �1zit�1 + �2zit�2 + qit + �it;

where �it
iid� N(0; 1); �i

iid� N (0; 1) and qit
iid� N (0; 1). We set  = 1 and report the size of the t-test

under the null hypothesis of  = 1: Among the various values for the parameters considered, we
report in Table 3 only the results for � = 0:9 for the AR(1) case and � = 0:9 and �2 = 0:2 for the
AR(2) case.

Several features of Table 3 are noteworthy. First, the LSDV estimator for  is biased downward
in both the AR(1) and AR(2) cases and the bias directly distorts the size of the t-test. While the size
distortion for RMA is relatively small and remains fairly constant, the distortion of the LSDV based
t-test increases with N . At the nominal size of 0.05, the size of t-test based on LSDV estimator is
as large as 0.94 when N = 200 given T0 = 5 in AR(1) case, whereas the corresponding size of t-test
based on RMA is merely 0.08. Second, RMA reduces the bias and variance signi�cantly for all cases
considered. However, in the AR(2) case for very small T , there is some size distortion in the RMA
based t-test when N is relatively large, mainly driven by the large second order bias of RMA. The
size distortion, however, diminishes quickly as T increases.

Case 4: AR(1) with cross-sectionally dependent observations. The DGP for this case is

yit = ai + �yit�1 + uit;

uit = �i�t + �it;

where �it
iid� N (0; 1) ; �i

iid� N (1; 1) and �t
iid� N (0; 1): We consider exactly the same simulation
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environment with that of Case 1 except that the error term is now serially correlated as re�ected by
the common factor �t. Table 4 reports the bias and MSE of the four estimators under comparison.
As in Table 1, we present the AB estimator for three di¤erent values of relative variance of the
individual-speci�c component of the error term.

We �rst note from Table 4 that the bias of RMA estimator is smaller for moderate � and/or
large T than when the observations are cross-sectionally independent. By stark contrast, the biases
of the competing estimators are larger under cross sectional dependence. This result is consistent
with the predictions of Proposition 3 that the bias of RMA (LSDV) is smaller (larger) under cross
sectional dependence. Consequently, the performance of RMA estimator stands out even when
the observations are cross-sectionally dependent. The dominance of RMA estimator is particularly
noticeable when N and T are moderate. Unlike the case of cross sectional independence, the RMA
estimator continues to dominate the alternative estimators even when N and T are large. Take
N = 200 and T = 20 for instance, the HK estimator had a comparable performance to the RMA
estimator under cross sectional independence, but the bias of RMA estimator is now much smaller
when observations are cross sectionally correlated. The story remains much the same in terms of
MSE. Although the MSE of RMA estimator is larger than when the observations are cross-sectionally
independent mainly due to the increased variance, it decrease more rapidly than the alternative
estimators as N and T grow. As a result, the RMA estimator has smaller MSE than the other
estimators especially when the underlying processes are highly persistent. To sum, our simulation
results suggest that the �nite sample performance of the RMA estimator is appealing even when the
observations are cross-sectionally correlated.

5 Conclusions

In this paper, we extend the idea of recursive mean adjustment as a bias reduction strategy to
estimating the dominant root in dynamic panel data regressions. Speci�cally we develop the RMA
estimators under general AR(p) process under both cross sectional independence and dependence. We
show that the RMA estimator delivers e¤ective bias reduction when the observations are independent
across individuals. When the observations are correlated across individuals and when this dependence
arises from an underlying factor structure, we �nd that e¤ective bias reduction still can be achieved
by using the RMA estimator. Our simulation results based on small T and larger N suggest that the
RMA estimator dominates comparable estimators in terms of bias, variance and MSE reduction when
error terms are cross sectionally independent. This �nding still holds in the presence of exogenous
regressors especially in terms of t-test performance. Overall our method is e¢ cient and e¤ective in
reducing bias and more importantly is straightforward to implement. In light of the fact that mean
and median unbiased estimators are generally unavailable for higher ordered panel autoregression
models, the recursive mean adjustment procedure advocated in this study is believed to �ll an
important gap in the dynamic panel literature.
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6 Appendix

Lemma 1: E
PN
i=1

PT
t=1 (zit � �zit) "it+1 = 0

Lemma 2: � (1� �)E
PN
i=1

PT
t=1 (zit � �zit) �zit = N

PT
t=1

1
t

n
2
t

Pt
h=1 h

(z)
h �

Pt
h=1 

(z)
h

o
where (z)h �Ezitzit�h:

Lemma 3: 1
NT E

PN
i=1

PT
t=1 (zit � �zit)

2 = �2

1��2 +O
�
log T
T

�
Proof of Lemma 1 & 2: It is straightforward, hence omitted. Note that for AR(1) case, we have

� (1� �)E
NX
i=1

TX
t=1

(zit � �zit) �zit = N
TX
t=1

�

t

�
1 + �t+1 � 2

t

�
1� �t
1� �

��
(A1)

= NT f� log T +O (1)g

Proof of Lemma 3: To prove Lemma 3, we use convergence in mean square. Note that for general
AR(p) case, we have

E
1

NT

NX
i=1

TX
t=1

 
zit �

1

t

tX
s=1

zis

!2

= 
(z)
0 +

1

T

TX
t=1

1

t

(

(z)
0 + 2

tX
h=1


(z)
h +

2

t

tX
h=1

h
(z)
h

)
� 2 1

T

TX
t=1

1

t

(
tX

h=0


(z)
h

)

= 
(z)
0 � 1

T

TX
t=1

1

t

(

(z)
0 � 2

t

t�1X
h=1

h
(z)
h

)

Hence for AR(1) case, we have

E
1

NT

NX
i=1

TX
t=1

 
zit �

1

t

tX
s=1

zis

!2
=

�2

1� �2 +O
�
log T

T

�
! �2

1� �2 : (A2)

Proof of Proposition 1 Firstly, from a standard central limit theorem for panel autoregressive
processes, we have

1p
NT

NX
i=1

TX
t=1

zit"it+1 !d N
�
0;

�4

1� �2

�
(A3)

From (A2), we have

p
NT

 
NX
i=1

TX
t=1

zit"it+1

!"
NX
i=1

TX
t=1

(zit � �zit)2
#�1

!d N
�
0; 1� �2

�
(A4)
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Now note that

p
NT (�̂RMA � �) =

p
NT

�PN
i=1

PT
t=1 zit"it+1

�
PN
i=1

PT
t=1 (zit � �zit)

2
� (1� �)

p
NT

PN
i=1

PT
t=1 (zit � �zit) �zitPN

i=1

PT
t=1 (zit � �zit)

2
(A5)

From (A1), (A2), and direct calculation, we have

� (1� �) plimN!1
1
N

PN
i=1

PT
t=1 (zit � �zit) �zit

1
N

PN
i=1

PT
t=1 (zit � �zit)

2
=

PT
t=1

h
�
t

�
1 + �t+1 �

�
2
t

� �1��t
1��

��i
T �

PT
t=1

h
1
t

�
1�

�
2�t

1��

�
+ 2�

t

�
1��t
(1��)2

��i
=

� log T

T
+O

�
T�2

�
For calculating its variance, �rst consider

E

 
TX
t=1

(zit � �zit) �zit

!2
= E

0@ TX
t=1

zit

 
1

t

tX
s=1

zis

!
�

TX
t=1

 
1

t

tX
s=1

zis

!21A2

From tedious calcualtion, we have

E

0@ TX
t=1

zit

 
1

t

tX
s=1

zis

!
�

TX
t=1

 
1

t

tX
s=1

zis

!21A2 = TX
t=2

1

t
�4 +O (1) = O (log T )

Hence the variance of the second term in (A5) is given by

V ar

 
� (1� �)

PT
t=1 (zit � �zit) �zitPT
t=1 (zit � �zit)

2

!
= O

�
log T

T 2

�
Therefore

p
NT (�̂RMA � �) = Op

 
log T

r
N

T

!
+Op

 r
N

T 3

!
+

p
NT

�PN
i=1

PT
t=1 zit"it+1

�
PN
i=1

PT
t=1 (zit � �zit)

2
(A6)

so that as T;N !1 but log T
q

N
T ! 0; we have

p
NT (�̂RMA � �)!d N

�
0; 1� �2

�
(A7)

If N=T 3 ! 0 but log T
q

N
T ! � where � is a constant; then we have

p
NT (�̂RMA � ��B (�; T ))!d N

�
0; 1� �2

�
(A8)
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or p
NT (�̂RMA � �)!d N

�
�B (�; T ) ; 1� �2

�
where B (�; T ) is de�ned as

B (�; T ) =

1
T

PT
t=1

h
�
t

�
1 + �t+1 �

�
2
t

� �1��t
1��

��i
1� 1

T

PT
t=1

h
1
t

�
1�

�
2�t

1��

�
+ 2�

t

�
1��t
(1��)2

��i : (A9)

Proof of Proposition 2

Proof of (i) For ease of reference, we restate (10) here as

y+it �
1

t� 1

t�1X
s=1

yis = �

 
yit�1 �

1

t� 1

t�1X
s=1

yis

!
+ eit;

where

eit = � (1� �)
1

t� 1

t�1X
s=1

zis + �it +

p�1X
j=1

�
�j � �̂j;LSDV

�
�zit�j :

Noting that E
PT
t=p�zit�j�zit�1 = O (1) and plimN!1

�
�̂j;LSDV � �j

�
= O

�
T�1

�
; we have

plimN!1
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�
= � (1� �) plimN!1

PN
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t=1

h�
yit�1 � 1

t�1
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�
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+plimN!1
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�zit�j
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PN
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yit�1 � 1
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s=1 yis

�2
= B (�; T ) +

O
�
T�1

�
D (�; T )

= B (�; T ) +O
�
T�2

�
; (A10)

which establishes (12) in the text.
Next, we obtain (13). For concreteness we will consider the AR(2) case and then show how the

logic generalizes to an AR(p). Consider the regression error

�yit = �it �
�
�̂pRMA � �

�
yit�1:

Using the fact that (yit�1 � �i) � (yit�2 � �i) = (yit�1 � yit�2) where �i = E (yit) ; the bias of the
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pooled estimator �̂
p

RMA can be written as

�̂
p

RMA � � = �
�
�̂pRMA � �

� PN
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PT
t=1 (yit�1 � yit�2) (yit�1 � yi��1)PN
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2
;

where yi��1 and �i� are time-series averages. As N !1; the term labeled A above has the limiting
value
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It follows that
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Noting that the AR(2) model has the representation
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It is apparent that this logic goes through in the AR(p) case. We can therefore say
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It follows that the residual bias in �̂
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is inconsequential.
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Proof of Proposition 3: For LSDV, begin by representing the estimator as
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In the one factor (K = 1) case, the latent model representation is
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Dealing with the denominator in a similar manner, we get
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Taking the limit as N !1 followed by an expansion as T !1 gives

plimN!1
1
NA

C
NT

plimN!1
1
NB

C
NT

=

��2ALSDV (�; T )
�PT

t=1

�
Ft�1 � T�1

PT
t=1 Ft�1

�2��1
+m2

� (�̂� �)

�2BLSDV (�; T )

�PT
t=1

�
Ft�1 � T�1

PT
t=1 Ft�1

�2��1
+m2

�

;

where

(�̂� �) =

PT
t=1

�
Ft�1 � T�1

PT
t=1 Ft�1

� �
�t � ��

�
PT
t=1

�
Ft�1 � T�1

PT
t=1 Ft�1

�2 :

22



This implies
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It follows that
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Table 1: Comparison of Alternative Estimators in Panel AR(1) case

Bias MSE �100
T0 N � AB1 AB2 AB3 LSDV HK RMA AB1 AB2 AB3 LSDV HK RMA
5 50 0.3 0.11 0.70 0.70 -0.28 -0.11 0.03 1.70 48.62 48.98 8.08 1.71 0.97
5 50 0.5 0.03 0.50 0.50 -0.33 -0.14 0.03 0.62 24.54 24.97 11.63 2.58 0.94
5 50 0.9 -0.01 0.05 0.09 -0.47 -0.23 0.01 0.26 0.39 0.92 22.33 5.89 0.75
5 100 0.3 0.11 0.70 0.70 -0.27 -0.10 0.03 1.49 48.64 48.98 7.78 1.38 0.54
5 100 0.5 0.04 0.50 0.50 -0.33 -0.14 0.03 0.40 24.56 24.98 11.26 2.20 0.54
5 100 0.9 0.00 0.05 0.09 -0.47 -0.23 0.01 0.13 0.34 0.91 21.91 5.46 0.39
5 200 0.3 0.11 0.70 0.70 -0.27 -0.10 0.03 1.39 48.64 48.98 7.67 1.23 0.30
5 200 0.5 0.04 0.50 0.50 -0.33 -0.14 0.03 0.29 24.57 24.97 11.12 2.03 0.32
5 200 0.9 0.00 0.05 0.09 -0.46 -0.22 0.01 0.06 0.31 0.90 21.67 5.22 0.19
10 50 0.3 0.05 0.70 0.70 -0.14 -0.03 0.03 0.55 48.57 48.97 2.04 0.33 0.39
10 50 0.5 0.01 0.49 0.50 -0.16 -0.04 0.04 0.27 24.49 24.97 2.88 0.42 0.40
10 50 0.9 -0.01 0.04 0.09 -0.25 -0.10 0.01 0.17 0.29 0.90 6.21 1.11 0.19
10 100 0.3 0.06 0.70 0.70 -0.14 -0.03 0.03 0.44 48.61 48.98 1.94 0.21 0.23
10 100 0.5 0.02 0.50 0.50 -0.16 -0.04 0.04 0.15 24.53 24.97 2.76 0.29 0.26
10 100 0.9 0.00 0.05 0.09 -0.24 -0.09 0.01 0.08 0.26 0.90 6.06 0.98 0.10
10 200 0.3 0.06 0.70 0.70 -0.13 -0.03 0.03 0.39 48.63 48.98 1.87 0.14 0.16
10 200 0.5 0.02 0.50 0.50 -0.16 -0.04 0.04 0.09 24.55 24.97 2.69 0.23 0.20
10 200 0.9 0.00 0.05 0.09 -0.24 -0.09 0.02 0.04 0.25 0.90 6.00 0.92 0.07
20 50 0.3 0.02 0.70 0.70 -0.07 -0.01 0.02 0.19 48.51 48.97 0.54 0.11 0.17
20 50 0.5 0.00 0.49 0.50 -0.08 -0.01 0.03 0.11 24.39 24.97 0.72 0.11 0.20
20 50 0.9 -0.01 0.03 0.09 -0.12 -0.04 0.02 0.08 0.14 0.87 1.53 0.19 0.07
20 100 0.3 0.03 0.70 0.70 -0.07 -0.01 0.02 0.13 48.56 48.97 0.49 0.06 0.11
20 100 0.5 0.01 0.49 0.50 -0.08 -0.01 0.03 0.06 24.46 24.96 0.67 0.06 0.14
20 100 0.9 0.00 0.03 0.09 -0.12 -0.04 0.02 0.04 0.13 0.88 1.48 0.16 0.05
20 200 0.3 0.03 0.70 0.70 -0.07 -0.01 0.02 0.10 48.61 48.98 0.47 0.03 0.08
20 200 0.5 0.01 0.49 0.50 -0.08 -0.01 0.03 0.03 24.50 24.97 0.64 0.04 0.12
20 200 0.9 0.00 0.03 0.09 -0.12 -0.04 0.02 0.02 0.12 0.88 1.46 0.14 0.04

Notes: AB1, AB2, and AB3, respectively represent the Arellano and Bover (1995) estimators using �� = 1; 5 and
10. Entries are obtained from 10,000 replications. DGP is

yit = �i + zit;

zit = �zit�1 + �it;

where �it
iid� N (0; 1); �i

iid� N
�
1; �2�

�
.
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Table 2: Comparison of LSDV and RMA in Panel AR(2) case

Bias Variance � 100 MSE � 100
�̂pRMA �̂2 �̂pRMA �̂2 �̂pRMA �̂2

T0 N � �2 LSDV RMA LSDV RMA LSDV RMA LSDV RMA LSDV RMA LSDV RMA
5 50 0.9 0.2 -0.62 -0.20 -0.19 0.02 0.92 1.82 0.53 0.84 39.70 5.99 4.07 0.88
5 100 0.9 0.2 -0.62 -0.20 -0.19 0.02 0.47 0.93 0.28 0.44 38.77 4.92 3.78 0.49
5 200 0.9 0.2 -0.62 -0.20 -0.19 0.02 0.23 0.46 0.13 0.21 38.40 4.37 3.62 0.27
10 50 0.9 0.2 -0.32 -0.07 -0.11 0.02 0.28 0.37 0.23 0.29 10.82 0.79 1.46 0.32
10 100 0.9 0.2 -0.32 -0.06 -0.11 0.02 0.14 0.19 0.12 0.15 10.46 0.56 1.31 0.19
10 200 0.9 0.2 -0.32 -0.06 -0.11 0.02 0.07 0.09 0.06 0.07 10.40 0.46 1.26 0.12
20 50 0.9 0.2 -0.16 -0.01 -0.06 0.01 0.08 0.09 0.10 0.11 2.63 0.10 0.48 0.13
20 100 0.9 0.2 -0.16 -0.01 -0.06 0.01 0.04 0.04 0.05 0.06 2.54 0.05 0.42 0.08
20 200 0.9 0.2 -0.16 -0.01 -0.06 0.01 0.02 0.02 0.03 0.03 2.50 0.03 0.39 0.05
5 50 0.5 0.2 -0.58 -0.31 -0.24 -0.11 1.15 2.23 0.50 0.73 34.50 11.70 6.31 1.87
5 100 0.5 0.2 -0.57 -0.30 -0.24 -0.10 0.55 1.08 0.25 0.36 33.31 10.16 5.95 1.43
5 200 0.5 0.2 -0.57 -0.30 -0.24 -0.10 0.28 0.54 0.12 0.18 32.85 9.47 5.77 1.22
10 50 0.5 0.2 -0.28 -0.11 -0.13 -0.04 0.39 0.58 0.21 0.25 8.28 1.69 1.84 0.41
10 100 0.5 0.2 -0.28 -0.10 -0.13 -0.04 0.20 0.30 0.10 0.13 7.92 1.32 1.70 0.27
10 200 0.5 0.2 -0.28 -0.10 -0.13 -0.04 0.10 0.15 0.05 0.06 7.80 1.16 1.64 0.20
20 50 0.5 0.2 -0.13 -0.03 -0.06 -0.01 0.16 0.21 0.10 0.11 1.94 0.28 0.51 0.12
20 100 0.5 0.2 -0.13 -0.03 -0.06 -0.01 0.08 0.10 0.05 0.06 1.82 0.17 0.45 0.07
20 200 0.5 0.2 -0.13 -0.03 -0.06 -0.01 0.04 0.05 0.03 0.03 1.77 0.12 0.42 0.04

Notes: DGP is

yit = �i + zit;

zit = �1zit�1 + �2zit�2 + �it;

where �it
iid� N(0; 1); �i

iid� N
�
0; �2�

�
.
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Table 3: Comparison of LSDV and RMA with Exogeneous Variable.

Bias Variance � 100 MSE � 100 Rej. of t-test
AR(1) case

T0 N � LSDV RMA LSDV RMA LSDV RMA LSDV RMA
5 50 0.9 -0.12 0.00 0.52 0.51 1.91 0.51 0.47 0.08
5 100 0.9 -0.12 0.00 0.26 0.25 1.65 0.25 0.72 0.08
5 200 0.9 -0.12 0.00 0.13 0.13 1.50 0.13 0.94 0.08
10 50 0.9 -0.05 0.00 0.23 0.22 0.48 0.22 0.22 0.06
10 100 0.9 -0.05 0.01 0.12 0.11 0.36 0.12 0.36 0.07
10 200 0.9 -0.05 0.01 0.06 0.06 0.30 0.06 0.60 0.07
20 50 0.9 -0.02 0.00 0.11 0.11 0.14 0.11 0.10 0.06
20 100 0.9 -0.02 0.00 0.05 0.05 0.09 0.05 0.14 0.06
20 200 0.9 -0.02 0.00 0.03 0.03 0.06 0.03 0.22 0.07

AR(2) case: �2 = 0:2
T0 N � LSDV RMA LSDV RMA LSDV RMA LSDV RMA
5 50 0.9 -0.13 -0.05 0.52 0.49 2.11 0.71 0.51 0.16
5 100 0.9 -0.12 -0.04 0.26 0.25 1.82 0.45 0.77 0.22
5 200 0.9 -0.13 -0.05 0.13 0.12 1.70 0.33 0.96 0.33
10 50 0.9 -0.06 -0.01 0.24 0.23 0.54 0.24 0.25 0.08
10 100 0.9 -0.05 -0.01 0.11 0.11 0.41 0.12 0.41 0.07
10 200 0.9 -0.05 -0.01 0.06 0.06 0.36 0.07 0.68 0.09
20 50 0.9 -0.02 0.00 0.11 0.11 0.15 0.11 0.11 0.05
20 100 0.9 -0.02 0.00 0.05 0.05 0.10 0.05 0.17 0.06
20 200 0.9 -0.02 0.00 0.03 0.03 0.07 0.03 0.28 0.06

Notes: DGP is

yit = �i + zit;

zit = �1zit�1 + �2zit�2 + qit + �it;

where �it
iid� N(0; 1); �i

iid� N (0; 1), qit
iid� N (0; 1) and  = 1.
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Table 4: Comparison of Alternative Estimators in Panel AR(1) under Cross Sectional Dependence

Bias MSE �100
T0 N � AB1 AB2 AB3 LSDV HK RMA AB1 AB2 AB3 LSDV HK RMA
5 50 0.3 -0.04 0.69 0.70 -0.30 -0.13 -0.01 9.71 47.82 48.93 15.84 11.20 14.63
5 50 0.5 -0.09 0.49 0.50 -0.37 -0.18 -0.02 10.46 23.60 24.92 20.75 13.04 14.00
5 50 0.9 -0.10 -0.02 0.08 -0.52 -0.29 -0.06 5.83 2.68 0.87 34.28 18.39 12.58
5 100 0.3 -0.03 0.69 0.70 -0.29 -0.13 0.00 9.44 47.90 48.94 15.22 10.53 13.72
5 100 0.5 -0.09 0.49 0.50 -0.36 -0.17 -0.01 10.04 23.69 24.93 20.03 12.29 13.12
5 100 0.9 -0.09 -0.02 0.08 -0.52 -0.29 -0.06 5.58 2.51 0.86 33.84 17.88 12.15
5 200 0.3 -0.02 0.69 0.70 -0.29 -0.12 0.00 9.22 47.94 48.94 14.91 10.36 13.46
5 200 0.5 -0.08 0.49 0.50 -0.36 -0.17 -0.01 9.83 23.74 24.92 19.50 11.93 12.76
5 200 0.9 -0.09 -0.01 0.08 -0.51 -0.28 -0.06 5.37 2.42 0.85 33.18 17.30 11.55
10 50 0.3 -0.04 0.69 0.70 -0.16 -0.05 0.00 4.99 47.66 48.92 6.19 4.76 5.76
10 50 0.5 -0.08 0.48 0.50 -0.19 -0.08 0.00 5.20 23.31 24.91 7.36 4.85 5.05
10 50 0.9 -0.11 -0.06 0.08 -0.29 -0.14 -0.04 4.34 2.34 0.79 11.19 5.36 3.25
10 100 0.3 -0.04 0.69 0.70 -0.15 -0.05 0.01 4.76 47.78 48.93 5.92 4.52 5.53
10 100 0.5 -0.07 0.48 0.50 -0.19 -0.07 0.00 4.91 23.46 24.92 7.02 4.53 4.76
10 100 0.9 -0.11 -0.05 0.08 -0.29 -0.14 -0.03 4.08 2.14 0.79 10.79 4.99 2.91
10 200 0.3 -0.04 0.69 0.70 -0.15 -0.05 0.00 4.61 47.85 48.93 5.83 4.34 5.28
10 200 0.5 -0.08 0.48 0.50 -0.19 -0.07 0.00 4.76 23.53 24.92 6.95 4.37 4.57
10 200 0.9 -0.11 -0.05 0.08 -0.29 -0.14 -0.04 3.92 2.00 0.77 10.84 4.93 2.88
20 50 0.3 -0.03 0.69 0.70 -0.08 -0.02 0.01 2.49 47.24 48.90 2.63 2.24 2.57
20 50 0.5 -0.05 0.47 0.50 -0.10 -0.03 0.01 2.37 22.60 24.88 2.74 2.05 2.14
20 50 0.9 -0.09 -0.07 0.07 -0.15 -0.07 -0.01 2.14 1.51 0.61 3.21 1.50 0.92
20 100 0.3 -0.02 0.69 0.70 -0.08 -0.02 0.01 2.35 47.46 48.92 2.49 2.12 2.46
20 100 0.5 -0.04 0.48 0.50 -0.10 -0.03 0.01 2.23 22.87 24.90 2.62 1.94 2.05
20 100 0.9 -0.09 -0.06 0.07 -0.15 -0.07 -0.01 2.06 1.42 0.62 3.14 1.43 0.87
20 200 0.3 -0.03 0.69 0.70 -0.08 -0.02 0.01 2.25 47.60 48.92 2.42 2.01 2.32
20 200 0.5 -0.04 0.48 0.50 -0.10 -0.03 0.01 2.14 23.03 24.91 2.55 1.85 1.94
20 200 0.9 -0.09 -0.06 0.07 -0.15 -0.07 -0.01 1.98 1.36 0.63 3.08 1.37 0.82

Notes: See footnotes in Table 1. DGP is

yit = ai + �yit�1 + uit;

uit = �i�t + �it;

where �it
iid� N (0; 1) ; �i

iid� N (1; 1) and �t
iid� N (0; 1):
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