Bias Reduction in Dynamic Panel Data Models
by Common Recursive Mean Adjustment

Chi-Young Choi Nelson C. Mark
University of Texas at Arlington University of Notre Dame and NBER

Donggyu Sul*
University of Auckland

June 18, 2008

Abstract

LSDV estimation of the dominant root in dynamic panel regression is vulnerable to downward
bias. This paper studies recursive mean adjustment (RMA) as a bias reduction strategy. We
develop the RMA estimators for general AR(p) process under both cross sectional independence
and dependence. We study its asymptotic properties as IN,T — oo jointly and find that the pro-
posed asymptotically normal estimator exhibits nearly negligible bias when (log® T') (N/T) — ¢
where ( is a non-zero constant. The proposed method is an efficient and effective bias reduction
strategy and is straightforward to implement. Our simulation experiments suggest that the RMA
estimator performs quite well in terms of bias, variance and MSE reduction both when error terms
are cross sectionally independent and correlated. It dominates comparable estimators particularly
when T is small and/or the underlying process is highly persistent.
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1 Introduction

In small T samples, accurate estimation of the autocorrelation coefficient p € [0, 1), of a stationary but
persistent first-order autoregressive time series v+ = ; + pyit—1 + €it, €it w (0, a?), must account for
downward bias induced by running the regression with a constant. To see the source of this bias, think
of running least squares without a constant on deviations from the sample mean y; — 7! Zthl Yit-
Then for any observation t = 1,...,T, the regression error ¢;; is correlated with current and future
values of y;; embedded in the sample mean component of the explanatory variable.! This small
T bias is also present in fixed-effects estimators for panel data due to the incidental parameters
problem. For fixed T as N — oo, Nickell (1981) shows that the least squares dummy variable
(LSDV) estimator for the dynamic panel regression model remains substantially downward biased.
In this paper, we study and apply the recursive-mean adjustment (RMA) technique to estimate
linear dynamic panel data models under cross-sectional homogeneity of the dominant root. The
paper builds on the success of RMA to reduce bias in the regression context.? In the RMA strategy,
the observations are adjusted by the common recursive mean, (¢t — 1)1 Z§;11 y;; instead of the

3

sample mean.® Because the recursive mean does not contain future values of y;, the adjusted

regressor (Y —1— (tfll) Z;;ll y;;) is orthogonal to the original regression error (e;) and hence reduces
substantively the bias for the fixed effect.

We first develop the RMA strategy for general AR(p) processes under cross-sectionally indepen-
dent observations and under cross-sectional dependence. We also consider estimation of dynamic
panels with exogenous variables. As in Alvarez and Arellano (2003), Bai (2004) and Hahn and
Kuersteiner (2002), our asymptotic analysis is based on large T and large N.> We then carry out a
series of Monte Carlo experiments to evaluate the precision and effectiveness of the RMA estimator
in reducing bias and the accuracy of the asymptotic theory for small 7" and moderate N sample
sizes. When the observations are independent, the pooled RMA estimator is shown to deliver effec-
tive bias reduction. When the observations are cross-sectionally correlated and the dependence is
generated by an underlying factor structure, we find that the RMA estimator also performs quite
well particularly when T is small and/or p is close to unity.

The remainder of the paper is organized as follows. Section 2 develops and discusses asymptotic
properties of the panel RMA estimators under cross-sectionally independent observations. In section

'Mariott and Pope (1954) and Kendall (1954) discuss and characterize the first-order approximation of this bias.
Several bias correction strategies have been suggested in the literature, such as median unbiased estimation [Andrews
(1993)], approximately median unbiased estimation [Andrews and Chen (1994)] and mean unbiased estimation [Phillips
and Sul (2007)].

*The RMA strategy was applied to reduce bias in regression by So and Shin (1999a) and in the context of unit root
testing by So and Shin (1999b, 2002).

3The commonality refers to the fact that the identical recursive mean is subtracted from both dependent and
independent variables.

% As illustrated below, since the error term after the RMA adjustment now contains —(1 — p)(tfll) Zj;i yi; which
is correlated with the adjusted regressor, one can obtain an unbiased control for the fixed effect if p = 1.

?Other research that has addressed the bias in dynamic panel data estimation include Phillips and Sul (2007) and
Sul (2007). Phillips and Sul study the mean unbiased estimator for the panel AR(1) model with cross-sectionally
dependent observations, whereas Sul applies the RMA method to construct panel unit root tests for fixed N and large
T.



3, we extend the asymptotic analysis to an environment with cross-sectionally correlated observations.
Section 4 reports the results of Monte Carlo experiments that compare performance across alternative
estimators. Section 5 concludes. The Appendix contains proofs and details of many arguments made
in the text.

2 Asymptotic Properties Under Cross-Sectional Independence

In this section, we consider observations in dynamic panel data with individual-specific fixed effects.
Section 2.2 considers dynamic panels with exogenous regressors. Here, we begin with the panel p-th
order autoregression.

2.1 Panel AR(p)

The data are assumed to be generated by the latent model in

Assumption 1 Fori=1,...N,t =1,...T, the observations {y;;} have the latent model structure

Yit = M T Zit, (1)
p

Gt = Y piZii—j + € (2)
=1

where ’2§:1 pj‘ =|pl <1, u (1, Ji), Yio i 0,02/ (1—p?)), and € i (0,0?) is independent

of p1; and 0, and has finite moments up to the fourth order.5

The latent model formulation (1)-(2) has the observationally equivalent regression representation

P
vie = i (L= p) + > psvir—j + €, (3)

j=1
with initial observation y;,0 = p; + zj. Since most economic time series are positively serially

correlated, we assume that p = Z?:l pj € [0,1). On occasion, it will be useful to recast (3) in the
following augmented Dickey-Fuller (ADF) form

p—1
Yit = i + pYi—1 + Y 6;Ayi_j + €ir. (4)

Jj=1

2.1.1 The AR(1) environment

A widely studied environment for dynamic panel data estimators sets p = 1 in Assumption 1,

Yit = a; + pYir—1 + €it, (5)

5The independence and fourth-moment restrictions were also imposed by Alvarez and Arellano (2003).



where a; = (1 — p) p; with €; u (0,02).

LSDV estimation of the panel AR(1) model is equivalent to estimating it —7;r = p (Yit—1 — Y;r)+
e;+ by least squares without a constant. Notice that the observations are deviations from the sample
mean Y, = T~} Z;Trzl y;; and the regression error is e; = € + a; — (1 — p)y;p. For p € [0, 1), fixed
T as N — oo, Nickell (1981) shows that the LSDV estimator is downward biased due to the positive
correlation between €;; and current and future values of y;; contained in the ¥,7_; component of the
Tegressor.

The panel RMA estimator in the AR(1) case can be obtained as follows. First, form the recursive
mean cy_1 = (t — 1)} 22;11 y;; and form the adjusted variables (y;; — ci—1) and (yi—1 — cit—1) to
run pooled least-squares without a constant on

(yit — cit—1) = p (Yit—1 — Cit—1) + €, (6)
where e = e+ (1 — p) p; — (1= p)cir—1 = € — (1 — p) (£ — 1) Z;;ll zi; and zj is given in (2). The
RMA estimator for p is

Zf\; Zthz (yit—l - Cit—l) (yit - Cit—l)

Zi]\il Zthz (Z/z‘t—l - Cit—1)2

(7)

PRMA =

Estimates of the individual-specific effects are then given by @; = 71 ZtT:1(yit — PRMAYit—1)-

It is worth noting that RMA is able to control for the individual-specific effect because F(1 —
p)cit—1 = p; especially when p = 1. The central insight of this strategy is that the adjusted regressor
(Yyit—1 — cit—1) is orthogonal to the original error term (e;;) because the recursive mean contains
observations only up through date ¢t — 1. When p < 1, a correlation still exists between the adjusted
regressor (y;—1—ci—1) and the new error term (e;—(1 — p) (¢ — 1)_1 Z;;ll zij) via ¢z—1 and 23;11 Zij,
but RMA adjustment reduces the resulting bias substantively. Since it is the identical recursive
mean c¢;;—1 that is subtracted from both y;; and y;;—1, the estimator is more precisely described as
the ‘common’ RMA estimator. For the ease of exposition, however, we will drop the term ‘common’
and simply refer to the RMA estimator throughout the paper. The asymptotic properties of the
estimator are stated in

Proposition 1 (Asymptotic distribution in the AR (1) model with fized effects) Let the observations
be generated by Assumption 1 with p = 1.

(i) If (log2 T)(N/T) — ¢ as T, N — oo, then pgya is asymptotically distributed as

\/ﬁ (pRMA —pP— B (p7 T)) _>d N (07 1- pZ) ) (8)



where

T-1 t—1 t—1
B(P:T) = (1p)H>0 C p’ Zt—l {2t_lzh’7§f)2'7§f)},

T-1 t—
D(p,T) = (T-1)45 - Yty - tlzhv 1
t=1

and 72’2) 15 the covariance between zi and Zijip.
(it) If (log®>T) (N/T) — 0 as T, N — oo, then prya is asymptotically distributed as

m(ﬁﬁMA - p) —IN (07 1 - P2) : (9)

The proof of Proposition 1 is presented in the Appendix. Whereas Alvarez and Arellano (2003) show
that LSDV is consistent if N/T'— 0 as T, N — o0, consistency of pryia requires logT\/N/T — 0

because the bias term B (p,T) is O (log T) . However, the actual bias of pry;a turns out to be so

small that it can be ignored in practice. To see this, consider the explicit formula of the bias for

fixed T'as N — oo,
T _ _t—1
S [ (1072 -2 {3 {15 })
> 0.

B(p,T) = plimy_o (Prua — p) = T v, [ﬁ (1—2’f:; +2{%} {%})] >

Figure 1 shows the value of the bias B (p,T") for various p and 7. The maximum bias is 0.028 which
occurs at 7' = 13 and p = 0.46. In addition, the bias gets smaller as p is closer to unity as predicted.

There are two special cases where prya is exactly unbiased for fixed T as N — oo. The first case
is when p = 1. Here, it can be seen from (6) that e;; = ¢;; which implies E(y;;—1€;1) = E(cii—1€i1) = 0.
The second case is when T' = 3 for any p € [0, 1). In this case,

E [(yi — vi1) vir + (vi2 — 3 {va + viz}) 3 {vin + viz}]
E [(yn — i) yh + (vio — 3 {ya + yiQ})Q}
E [%‘22 - %21]
E [(%2 - yﬂ)ﬂ

B(p,3) = —(1-p)

= —(1=p =0,

because E(zi?z) :E(zfl) by the covariance stationarity of y;;. Generally speaking, since the bias is so
small, it is fair to say that pgy;a is approximately consistent when N is much larger than 7'
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Figure 1: Asymptotic bias of RMA estimator under AR(1) and independence

2.1.2 The AR(p) environment

Accurate measurement of higher-order autoregressive terms is vital in many applied problems such as
half-life estimation from impulse responses. In extending the model to the general AR(p) structure,
we refer to the augmented Dickey—Fuller form of the regression (4) and employ the RMA strategy
to obtain bias-corrected estimates of the ¢; coeflicients as well as p. Estimation proceeds in three

steps as follows.
Step 1: Estimate (4) by LSDV and call the estimated coefficients on the lagged differences éﬁj,LSDV.
Let yl"tr = yit — Z?;% &Sj,LSDVAyit—j and e;; = € + Z?;i ((bj — q?>j7LSDV) Ayit—j. Then (4) can be

rewritten as
Uit = a; + pyir—1 + €5} (10)

Step 2: The RMA estimator for p, phya, is then obtained from running a pooled least-squares

regression on
(?/;? - Cit—l) = p (Yit—1 — cit—1) + eéit,

where ¢ip 1 = (t—1)7' Y02 g and ey = — (1= p) (¢ — 1) 3002 256 e + 302) (¢j - Q?)j,LSDV) Azip—j.

Step 8: The LSDV estimator gAbjLSDV from step 1 is biased by O (T‘l) . This bias can be reduced



by treating pjy s as the true value of p and running a second LSDV regression on

p—1
(yir — Phoatie—1) = @i+ Y 6;Ayu—j + €b, (11)
=1

where eft =€+ (p — ﬁf{M A) yit—1. Call the resulting estimator g?);RM A B
The asymptotic distribution of p%,,, and qAﬁiRM A are given in,

Proposition 2: (Asymptotic Distribution in the AR(p) model with fized effects). Let the observa-
tions be generated by Assumption 1.

(i) If N — oo for fixed T, then the asymptotic bias of pj,, and gAbiRM A are

Plimy o (Phaia =) = B(p,T)+0(T7?), (12)
R 1
plimy e (Gr0a —6;) = 5B T)+0(T72), (13)

where B (p,T) is given in Proposition 1.
(ii) If (log®>T) (N/T) — ¢ as T,N — o0,
VNT (phpa —p— B (p,T)) = N (0,1 p?).
The proof of Proposition 2 is presented in the Appendix. Note that estimation in step 3 reduces
the O(T~!) bias in gAb%LSDV to O(T~2) if B(p,T) is small and can be ignored. These estimators

have trivial N—asymptotic bias for relatively large values of p. The asymptotic bias of ,E)qu\,I A is only
slightly larger than it is under the AR(1) case.

2.2 Panel AR(p) with exogenous regressor

We now consider dynamic panel data regressions with exogenous regressors. The observations are
generated according to

Assumption 2. For i =1,...N,t =1,...T, the observations {y;;} have the latent model structure

vie = H; + Bwit + zit, (14)
p—1

Z = pri-1+ Y Az + €l (15)
j=1

G = V4t + e, (16)



. iid iid
where w;; and ¢;; are econometrically exogenous to i, |p| < 1, p; ~ (u, ai) , and e ~ (O, 012) .

The latent form (14)-(16) has the observationally equivalent dynamic panel regression represen-

tation,
p—1 p—1
Vit = @i+ pYir—1 + D G Ay + Bwir + Y kiAwir—j +qi + €ar- (17)
o =1

Balestra and Nerlove (1966) emphasize different roles of two exogenous variables: wj; as a level effect
and ¢;; as a difference effect. In their empirical example, y;; is the quantity of natural gas, w; is per
capita income, and g;; is the relative price of natural gas. Per capita income affects gas demand in
levels but the relative price affects gas demand in the ‘p—difference.’

Phillips and Sul (2007) show that for fixed T' as N — oo the LSDV estimator for /3 is consistent
but E (kLspy — k) = O (Tﬁl) such that the LSDV estimators of the coefficients on the lagged wj;
variables are biased. In general, the parameters of interest are p, v, and 5. However, when the
observations are cross-sectionally correlated, as is discussed in the next section, the methods used to
control for cross-sectional dependence are sensitive to bias in the estimated covariance matrix which
in turn is sensitive to bias in the ; coefficients. Therefore, our treatment of the RMA estimator
here pertains to obtaining bias attenuation in the estimation of all the coefficients in (17). The RMA
estimator is obtained as follows:

Step 1: Estimate (17) by LSDV and call the estimated coefficients S;gpyv, g?)j,LSDV, kjrspv. Let yih =
1 2 —1 . -1 g
Yit — Z§:1 ¢ LsDV AYit—j —Brspy Wit — Z?:l fj,LsDv Awie—j and 5;2 =€t + Z§:1 (¢j - ¢j,LSDv) Ayit—j

+ (B - BLSDV) wit + Z?;i (kj — RjLspv) Awje—j. Note that (17) can be rewritten as

i = ai + pyi—1 + 6;.

Step 2. Let cyp_1 = (t —1)71 22;11 yis and run pooled least-squares on
(y;§ - Cit—l) = p (Yit—1 — cit—1) + eéit,
which gives pfy 4. the RMA estimator of p.

Step 3. Treat plya s the true value of p and run LSDV on

p—1 p—1
Yit — ﬁ%MAyz‘tq =a; + Z ¢ Ayit—j + Bwir + Z KjAwi—j + eft- (18)
j=1 j=1

If the regression contains only the level effect (v = 0), then stop. If a difference effect is present,

then proceed to



. 1 2 1
Step 4. Let 4™ = yie — PhagaYie—1 — 21 O rnadVi—j + Brvawie + 251 AjraaAwie—; and run
LSDV on

it T = ai + i + €,
which gives 4pya, the RMA estimator for +.H

It is straightforward to show that Proposition 2 holds for pf,, and ‘%?,RM A- With regard to
YRMA >, We note that

p—1
ehy = €t (p — Phaia) Vit— 1+Z (cbj quLSDV) Ayir— ﬁ(ﬁ BLSDV) wn+z Kj — RjLSDV) Awit—j.
7=1

Also, note that for large N and T,

ISX

, N
5 - ; = 0O
(0 — Phaia) NTZZ itYit—1 b

where the affix notation ‘Z;’ signifies that the series x; has been demeaned. It follows that

VNT (rypa — ) =

1 N T ~ ~ 1 N T ~
VNT D ic 21 ity B < 1 N log T) VNT Dim1 2at—1 ditéit
1 N T - P\ A 1 N T -~
NT Doim1 D=1 qizt NT T NT Doim1 D=1 int

As N, T — oo,
VTN (Jrama —7) —° N(O,U?y)-

3 Asymptotic Properties with cross-sectionally correlated observa-
tions

In most panel data environments, observations will be correlated across individuals. To maintain
clarity and to avoid a proliferation of notation, we assume that the cross-sectional correlation of the
regression error has a single factor representation. The results obtained here under the single-factor
representation carry over to multi-factor environments at a cost of additional notational burden.

The environment under consideration is again the one in which observations are weakly stationary.



In addition to dependence on past values, the idiosyncratic component €; and individual-specific
fixed effects, however, y;; now may be hit by a common factor §;.” The observations are generated
according to

Assumption 83 Fori=1,...N,t =1,...T, the observations {y;;} have the latent model structure

Yit = M+ Zit, (19)
p
Zit = )Pz + Wit (20)
j=1
ug = 0;0¢ + €, (21)
where the vector of idiosyncratic errors e= (€),...,€y)" and € = (€i1,...,€67r) have E(e) = 0,

Ele) = 5, = diaglo?,....o% ], Elel® < M < o0, B (eher/N) = 7y (5,1) , [y (5 )] < M for all s,
and T 3°7 ST |y (s,1)| < M. The common factor has E [|6;]|* < oo, plimy oo T~ 31 62 =
o, with factor loadings [|d;|| < D < oo, and plimy_. ||6'd/N — D|| = 0 for some D > 0, where
0= (61,.-,0n)".

»

The above latent model representation can be recast to the common factor representation
Yit = pi + 0iFy + wit, (22)

where F; = Z;io P 6;—; is the serially correlated common factor component and x;; = E;io p7 €it—j
is the serially correlated but cross-sectionally independent idiosyncratic component. Since the error-
covariance matrix is characterized by 2N unknowns, the feasibility condition for implementing a
generalized least squares (GLS) correction is T > 4.8
To derive the exact bias formulae under cross-sectionally correlated y;¢, we introduce the following
notation. Let
iy (Fro1 = Fia) (61 - 0)
Zthz (Fr—1 — th1)2

be the LSDV estimator of p from the regression of F; = k + pFy_1 + 0; where Fy_; = (t —
1)t Z;;ll F,_;, and let

Pr1spv = P+ (23)

ZZ:Q (Ft—l - Ft—l) (9t —(1-=0p) thl)
S, (Fe1 — Fi)?

be the RMA estimator from F} — Fy_1 = p (Ft—l — Ft_l) + &4 where ¢, = 0; — (1 —p) Fy_1. Let
prspvicsp and praiajcsp respectively denote the LSDV and RMA estimators applied to the cross-

PrRMA =P+ ; (24)

"The factor structure has been employed by Bai and Ng (2002), Moon and Perron (2004) and Phillips and Sul
(2003).

$Including the lagged dependent variable and the fixed effects further reduces the degrees of freedom by 2 in the panel
AR(1) model. In a K—factor environment, for instance, there are (K + 1) N unknowns and the feasibility condition is
T > K + 3 in the panel AR(1) model.



sectionally correlated data. With these definitions in hand, we can now characterize the N —asymptotic
bias of the RMA and LSDV estimators when they are applied to observations where the error term
is governed by a single-factor structure.

Proposition 3: (N—asymptotic bias under cross-sectional dependence). Under Assumption 3 for
fixed T" as N — oo,

. R —(1+p) . _
plimy_o (Prspvicsp —p) = (1—n) <T +n(prrspy — p) +op (T71), (25)
N————
(23)
plimy_, o (/A)RMA|CSD - P) = (1= B(pT)+n(prrua —p) +0p (T, (26)
N———
(24)
where n = mgaz (0'2 + mgaz)_l € [0,1] captures the degree of cross-sectional dependence, m?; =

NISNG? g2 =715 02 02 = N7 1SN ST €2 and B(p,T) is given in Proposition
1.

Since the terms (f’F,LSDV — p) and (bF’RM A~ ,0) depend on the realization of the common factors
0 as seen from (23) and (24) and they are random for finite 7', we say that ppspyicsp and praiajcsp
exhibit random N —asymptotic bias. The random bias of prya|csp attributable to (ﬁRRM A — p)
is not troublesome because E([)RRM A~ p) is inconsequential as shown by So and Shin (1999b).
Consequently, the total bias in prya|csp is small even when the y;s are perfectly cross-sectionally
correlated (n = 1). When n = 0, the limiting values are not random since they do not depend on the
factor 6;. In this case, the o, (T71) term in (25) and (26) becomes O (T~2) in Proposition 3.

In light of the random asymptotic bias, it may be instructive to show their mean values. Taking

expectations of the expressions in Proposition 3 with noting that E (ﬁF’OLS - p) =—(1+3p)/T
and that E (pp gya — p) — B (p,T) is a tiny negative number, this yields
. I+p  2p )
E —p) = ——L P io(r
(PLspvicsp — P) T U + ( ),
E (ﬁ’RMA\CSD - P) = B(p,T)—n[B(p,T) = E (pprva — )] <B(p,T).

Somewhat surprisingly, praajcsp has lower mean bias than that of pry;a under independence.
This suggests that the performance of the feasible GLS estimator will be enhanced if RMA residuals
are used to estimate the error covariance matrix because it is less biased than the other estimators
under consideration.

4 Monte Carlo Experiments

In this section, we conduct Monte Carlo experiments to examine the precision and the effectiveness
of bias reduction achieved by the RMA estimators in small 7' and moderate N samples for p € [0,1).
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We vary the environments by the autoregressive order and by the degree of cross-sectional depen-
dence. For the economy of exposition, we are selective in tabulating the simulation results especially
when log T (N/T) is relatively large because in this case B (p,T") (and therefore the asymptotic bias)
remains in the distribution of the RMA estimator. Further details of the simulation results are avail-
able at the author’s web site.” We consider the following four cases for the simulation experiments.

Case 1: AR(1) with cross-sectionally independent observations. For this widely studied environ-
ment, several bias reduction methods have been proposed. We compare two of these to the RMA
estimator together with LSDV. The first is a GMM estimator studied by Arellano and Bover (1995,
hereafter AB) and the other is proposed by Hahn and Kuersteiner (2002, hereafter HK). The data
generating process is,

Yit = M T 2,

Zit = PZi—1 T €,

where €;; N (0,1), w; N (1,03). As in Assumption 1, the initial observation obeys y;; =
Wi + 21 o\ <1, ai + #), which produces weakly stationary sequences of y;:. We consider sample
sizes of N € {50, 100,200} and T € {6,11,21} so that the total sample size used in the regression is
To =T -1 € {5,10,20}.

The asymptotic variance of the AB estimator depends on the nuisance parameter of ¢ = oc/0,, =
1/0,, whereas the variances of RMA, LSDV, and HK do not. To explore the potential small-
sample dependence of the AB estimator on the variability of the individual-specific effect, we consider
alternative values of relative variance of the individual-specific component of the error term, o, €
{1,5,10}, or ¢ € {1,0.2,0.1}.

Table 1 reports the bias and mean-square error of the four estimators under comparison. The
RMA and AB estimators are seen to be upward biased while LSDV and HK are biased downward.
RMA compares well to HK for small T. Although the relative performance of HK improves as T
grows, when Ty = 5, for example, the HK estimator bears substantial downward bias (—0.22 for
p =0.9) even when N is as large as 200. For relatively large T', the performance of HK is comparable
to that of RMA particularly when p is relatively small. The GMM estimator due to AB performs
well for ¢ = 1, but its performance deteriorates substantively for ¢ = 0.2 and ¢ = 0.1. Even for
1 = 1, it is dominated by RMA for moderate values of p. In sum, RMA dominates HK both in
terms of attenuating bias and in precision for small 1" and it is typically more precise than AB, whose
performance is quite sensitive to ¥. The dominance of RMA over HK is particularly noticeable for
small T" or for highly persistent p when T is relatively large.

Case 2: AR(2) with cross-sectionally independent observations. Since it is not straightforward to
correct for bias with HK or AB in the AR(2) case, we only report the performance results for RMA

Full reports (MS excel format) are available at http://homes.eco.auckland.ac.nz/dsul013/working/MC _RMA xls
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in comparison to LSDV. For simplicity but without loss of generality, the DGP for this case is

Yit = M T Zi,

Zit = P1Rit—1 T P2Zit—2 T €it,
where €;; u N(0,1), p, YN (0, ai). We consider the lag coefficients (p, py) € {(0.9,0.2),(0.5,0.2),
(0.9,0.3),(0.5,0.3),(0.9,0.4), (0.5,0.4)} where p = p; + py. Here we report the results for (p, py) €
{(0.9,0.2),(0.5,0.2)} only because the results of the other cases are largely similar.

Table 2 reports the bias, variance and mean-square error of RMA and LSDV. We note that the
bias of LSDV in the AR(2) case is much more serious than that in AR(1) environment. For example,
when p = 0.9 and N = 50, the LSDV bias for p is -0.62, -0.32, -0.16 for Ty = 5, 10, and 20 respectively
whereas the biases were -0.47, -0.25, and -0.12 for the corresponding values of Tp in AR(1) case. Asin
AR(1) case, the bias hinges upon 7" rather than N. Although the variance of RMA is slightly larger
than that of LSDV, the MSE of RMA is consistently much smaller than that of LSDV estimator.

Case 3: AR(1) and AR(2) with exogenous regressor. Since Phillips and Sul (2007) show that Sy gpy
is asymptotically unbiased when the exogenous variable enters with a level effect, we concentrate on
the following DGP that allows an exogenous variable to enter in difference form,

Yit = Mt Zit,

Zit = P1Zit-1 + P2zit—2 + Vqit + €it,
where € i N(0,1), p; N (0,1) and g N (0,1). We set v =1 and report the size of the t-test
under the null hypothesis of v = 1. Among the various values for the parameters considered, we
report in Table 3 only the results for p = 0.9 for the AR(1) case and p = 0.9 and p, = 0.2 for the
AR(2) case.

Several features of Table 3 are noteworthy. First, the LSDV estimator for v is biased downward
in both the AR(1) and AR(2) cases and the bias directly distorts the size of the t-test. While the size
distortion for RMA is relatively small and remains fairly constant, the distortion of the LSDV based
t-test increases with IN. At the nominal size of 0.05, the size of t-test based on LSDV estimator is
as large as 0.94 when N = 200 given Ty = 5 in AR(1) case, whereas the corresponding size of t-test
based on RMA is merely 0.08. Second, RMA reduces the bias and variance significantly for all cases
considered. However, in the AR(2) case for very small T, there is some size distortion in the RMA
based t-test when N is relatively large, mainly driven by the large second order bias of RMA. The
size distortion, however, diminishes quickly as 7" increases.

Case 4: AR(1) with cross-sectionally dependent observations. The DGP for this case is

Yit = G + pYi—1 + Ust,
0:0¢ + €it,

Ut

where e 4 N (0,1),6; 4 N (1,1) and 6, ¢ N(0,1). We consider exactly the same simulation
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environment with that of Case 1 except that the error term is now serially correlated as reflected by
the common factor ;. Table 4 reports the bias and MSE of the four estimators under comparison.
As in Table 1, we present the AB estimator for three different values of relative variance of the
individual-specific component of the error term.

We first note from Table 4 that the bias of RMA estimator is smaller for moderate p and/or
large T than when the observations are cross-sectionally independent. By stark contrast, the biases
of the competing estimators are larger under cross sectional dependence. This result is consistent
with the predictions of Proposition 3 that the bias of RMA (LSDV) is smaller (larger) under cross
sectional dependence. Consequently, the performance of RMA estimator stands out even when
the observations are cross-sectionally dependent. The dominance of RMA estimator is particularly
noticeable when N and 1" are moderate. Unlike the case of cross sectional independence, the RMA
estimator continues to dominate the alternative estimators even when N and T are large. Take
N = 200 and T = 20 for instance, the HK estimator had a comparable performance to the RMA
estimator under cross sectional independence, but the bias of RMA estimator is now much smaller
when observations are cross sectionally correlated. The story remains much the same in terms of
MSE. Although the MSE of RMA estimator is larger than when the observations are cross-sectionally
independent mainly due to the increased variance, it decrease more rapidly than the alternative
estimators as N and T grow. As a result, the RMA estimator has smaller MSE than the other
estimators especially when the underlying processes are highly persistent. To sum, our simulation
results suggest that the finite sample performance of the RMA estimator is appealing even when the
observations are cross-sectionally correlated.

5 Conclusions

In this paper, we extend the idea of recursive mean adjustment as a bias reduction strategy to
estimating the dominant root in dynamic panel data regressions. Specifically we develop the RMA
estimators under general AR(p) process under both cross sectional independence and dependence. We
show that the RMA estimator delivers effective bias reduction when the observations are independent
across individuals. When the observations are correlated across individuals and when this dependence
arises from an underlying factor structure, we find that effective bias reduction still can be achieved
by using the RMA estimator. Our simulation results based on small T" and larger N suggest that the
RMA estimator dominates comparable estimators in terms of bias, variance and MSE reduction when
error terms are cross sectionally independent. This finding still holds in the presence of exogenous
regressors especially in terms of t-test performance. Overall our method is efficient and effective in
reducing bias and more importantly is straightforward to implement. In light of the fact that mean
and median unbiased estimators are generally unavailable for higher ordered panel autoregression
models, the recursive mean adjustment procedure advocated in this study is believed to fill an
important gap in the dynamic panel literature.
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6 Appendix
Lemma 1: Ezl]il Zthl (zit — Zit) €it41 =0

Lemma 2 —(1- pEXY, S =) 50 = NYL H{ES ) = S}
(2)

where ;" =Ez;;1 25 p.
Lemma 8 S, S (- 50 = 12+ 0 (57)

Proof of Lemma 1 & 2: It is straightforward, hence omitted. Note that for AR(1) case, we have

N T T p 9 1_pt
—(1—P)EZZ Zit — Zit) B = Nzt(1+ﬂt+1—t(>> (A1)
t=1

, 1—p
1=1 t=1
= NT{plogT +0(1)}

Proof of Lemma 3: To prove Lemma 3, we use convergence in mean square. Note that for general
AR(p) case, we have

=1 t=1 s=1
11 ! d 1
= véz)+TZt{véz)+227§f)+Zhﬁ)} Zt{th }
t=1 h=1 h=1 t=1
T t—1
z 1 1 z 2 z
= Vé)TZt{Vé) T2h 2)}
t=1 h=1

Hence for AR(1) case, we have

N t 2
1 1 o? log T o?

i=1 t=1 p 1=p

Proof of Proposition 1 Firstly, from a standard central limit theorem for panel autoregressive

processes, we have
1 N T 0_4
— zigiry1 =% N[0, —— A3
77 2o e~ N (0775 ) (A3
From (A2), we have

N T N T -1
\/ﬁ( Zzit&tﬂ) [ZZ Zzt*Zue ] —d N(071*P2) (A4)

i=1 t=1 i=1 t=1



Now note that

VNT (SN ST i
m(pRhlA —p)= ZZN(1 EtTl1 (zitl— Eit)z ) - (1-p)

From (A1), (A2), and direct calculation, we have

VNT YN S (2 — Zat) Zi
Zz‘]\il Zthl (zit — Zit)2

(A5)

1 Nl 2N S (mie = E) B =1 [§ (1 +* = () (11_—p;>)]
(1—p)plimy_, o N% Zi1 Z:T; Cu—z)? T T {% (1 B <12Tptp> Lz (&i,é’;))}
= Pl (2
T

For calculating its variance, first consider
T 2 L& T o[t 2

B (z (o = 720 ) e[S (t z) S (t z)

From tedious calcualtion, we have
T 1 T /4
(i) %

Hence the variance of the second term in (A5) is given by

ar | — (1 = Z?:l (zit — Zit) Zit _ logT
' ( S Y (zit_zit)2> O( 17 )

Therefore

VNT (30 S0 zusi
VNT (pryva — p) = Op (logTﬁ) + Op ( ﬁo,) + ZN( ZTI ( : t_ )t;rl) (A6)
i=1 2ut=1 \Zit — Zit

so that as T, N — oo but logTU% — 0, we have
VNT (praia — p) =% N (0,1 p?) (A7)
If N/T® — 0 but log T/ % — ( where ( is a constant, then we have

\/ﬁ(i)RMA —p—B(pT)) -1 N (O, 1- P2) (A8)
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or

VNT (prya — p) - N (CB (p,T),1- Pz)
where B (p,T) is defined as

B(p,T)—

FEL [t (- () (12))]
Srxi (- (35) % (05)]

—+

Proof of Proposition 2

Proof of (i) For ease of reference, we restate (10) here as
= =
y;,@ i1 ;yis =p <yit—1 i1 ;yis) + €4,

where

eit:_ 1_ t—lzzzs—i—elt—*—Z( ¢3LSDV)Azth
Noting that EZtT:p Az iZit—1 = O (1) and plimy_,00 ($j7LSDV - gi)j) =0 (T™'), we have

Zi\il ZtT:1 [(yz'tﬂ ] Sl yzs) 22211 Zis}
Zi]\il Z?zl (yit—l = 1 Z =1 yzs>2
Zf\; Zthl [(yit—l = 1 Zs 1 yzs) Zp;l (¢j - gbj,LSDV) Azit—j}

plimy_, (ﬁ%MA — p) = —(1-=p)plimy_,

+pth—>oo
27{\;1 thrzl (yitfl t— 1 Zs 1 yzs>2
-1
= B(p,T)+ %((::Tg =B (p,T)+0 (T7?), (A10)

which establishes (12) in the text.

Next, we obtain (13). For concreteness we will consider the AR(2) case and then show how the
logic generalizes to an AR(p). Consider the regression error

= €it — (IOZ}){MA ) Yit—1-

Using the fact that (yi—1 — ;) — (Yit—2 — 1;) = (Yir—1 — yir—2) where p; = E (y;1), the bias of the
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. P .
pooled estimator ¢pya can be written as

S Wi — Yi—2) (i1 — Y1)
Zi]\; 2321 (Yit—1 — yit—2)2
A
Zﬁil Zthl (Yit—1 — Yir—2) (€t — €i.)
Zé\il Zthl (Yit—1 — yit72)2

where y;._1 and €;. are time-series averages. As N — oo, the term labeled A above has the limiting

drva — = — (Phaa — P)

J/

_l’_

9

value

T (2) (2)
Zf\il Z?:l (Yit—1 — Yit—2) (Yit—1 — Yi—1) 2 =1 (70 - ) 1

plim = =5
N—oo Zi]\;l Zle (Yit—1 — Yir—2)* 2 Zthl <’yéz) — »ySZ’) 2

It follows that

N T
. - 1 . . _ o1
plim <¢§MA - ¢) =—3 plim (phy s — p) +O (T7") plim N Z Z (Yit—1 — Yit—2) (€t — €.) -
t=1

N—oo N—oo N—oo

Noting that the AR(2) model has the representation

Yit €it + €its

o C1 C2
- 1—-M\ML 1— ML

where A1 and A are the roots of (1 —p1z — p222) , and because

t=1

00 T 00 T
1 . 1 )
£ Serue (Z ) ph (e (Z )
T-1 9 .
= ¢ (1—XA) —cs —7 1-XM)+0 (T %) =0(T"") fors=1,2,

where

c1 = )\1 ()\1 — )\2) and Cy = —)\2/ ()\1 — )\2) .

It follows that
1

N T N T
. . 1 -
pthHooN Z Z (Yit—1 — Yit—2) (€t — €.) = —thNHooN Z Z (Yit—1 — Yit—26i.) = O (T 1) )
i=1 t=1 i=1 t=1

or equivalently

) - 1 . . _
plimy_, (¢€{MA - ¢) = _§thN—>oo (Phia —p) +0O(T77).
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It is apparent that this logic goes through in the AR(p) case. We can therefore say
Zﬁil Zthl Zitait)
N 7T
Din1 D %

1 . _
= 73 plim (pfya —p) +O(T72).
N—oo

. P 1 . ~D .
plim (gi) = qS) = ——plim (phya — p) + plim
Nosoo ZRMA =& 2 Noo ( RMA ) Neco

p

It follows that the residual bias in éRM , Is inconsequential.

Proof of (ii) From (A10), we have

C C
VNT (Phaa — p) = VNT DLNT +VNT25L

NT Dyt
where
L N = =
Cint = —(1—p) NT ; ; [(yit—l —i-1 ;yz‘s> 1 ; Zz's]
1

and

1 N 1 t—1 p—1 . 1

ConT = NT Z; ; (yzt—l ] Z;yz's> Z; <¢j - ¢j,LSDv) Azi—j| = Op ( NT3> ;
1= = S= J]=
since ) .
(¢j - ¢j,LSDV) =0p <NT> +0 <T> ;

and

Finally we have

NT

= ——C | N 1
NT (ﬁII){MA _P) = NTDLiNT +0p (logT T) +Op (T)

Hence as N, T — oo but , logT\/% — (, we have

VNT (i —p— B(p,T)) =4 N (0,1—p%) (A11)
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or

\/ﬁ(ﬁ%MA - ) -4 N (B (p,T),1-p%).

Proof of Proposition 3: For LSDV, begin by representing the estimator as

PLSDV — P = 5o
By

where
N T T T
AGr = XX (a1 —T7! Z Yir—1) (wie — T71 3 i),
=1i=1 =1 =1
N T
By = thz (Yit—1 — T~ tzl Yir—1)?.
1= : =

In the one factor (K = 1) case, the latent model representation is

Yit = M + Zit, Zit = PZit—1 + Wit, Ui = 0;0; + €41, (A12)
with
Zit = 0; Z PO+ ijfitfj = 0;Fy + . (A13)
§j=0 j=0

. 17T _ —1 N
Since yyu — T > ;Y =i — T 7" ) ;14 ®it, we have

M=
M=

(yzt I_T Zyzt 1)(uzt_T Zuzt)
t=1 t=1

@
I
—
~~
Il

2= 2= 2=
M= )=
‘IMW

= plimy_, Zit—1Ugt — T Z Zit—1 ) uit:|
t=1 t=1
' N [T 1z T
= plimy_,o= > | > (6iFi—1 + mi—1) (0:0; + €it) — Z (0iFi—1+ mir—1) Y (0i0 + €it)
i=1 [t=1 t=1
) . 1Y, [Z T T
= —o0“Arspv (p, T) + pthHOON > 6; [Z Fy_ 10, — Z F1) 95} , (A14)
i=1 t=1 Ti5 s=1
where
N
1 1L = T o?
2 — pli L | = -1
o“Arspv (p, T) = plimy oo ; T t;(; peit—j-1) S; Ezs] 1=, +0(T71).
Let limy oo NN 62 = = m2, then
2 2« | 7
plimpy_, NANT = —0“Arspv (p, T) +m§ > <Ft_1 -7 Ft_1> (Qt — 9) . (A15)
t=1 t=1



Dealing with the denominator in a similar manner, we get

) 1
plimy NB%T = o”Buspv (p, T) + mj

é <Ft_1 —-7! i Ft_1>2] .

t=1
Note that
N|rT

O-QB(va):pth—u)o%Z Z(i MEZt —Jj— 1) _(

i=1 |[t=1J=

2
(Z/ﬂé?zt —j— 1)) P sT+0(1).

Jj=

mﬂ

(A16)
Combining the two results gives

T — T 7
plimy_ L AS,  —0*Ausov (0, 1) +m5 3, (R =TS Fa) (60 -0)

li 1pCc 2
pimy o NDONT 0'2BLSDV (p, T) + m% [2?1 (Ft,1 —T-1 ZtT:I Ft,1> :|

Let T'— oo to have

so that

It follows that

N 2
1 T T 2
plimN_,OON Z(Sf > (Ft—l -7ty Ft_1> =Tm? [1 00p2 + O, (Tl/Z)} , as T — oo. (A17)

= =1 t=1 -

Taking the limit as N — oo followed by an expansion as T' — oo gives

2 —1
iy a0y (0.7 [ (B =TS R | amd - 9)
Py o N ANT

: 1 pC
plimy_, NBNT

)

2 -1
UQBLSDV (p’ T) [Z?l (thl — T‘f1 Zle thl) :| + m(%

where

S <Ft—1 —T Yyl Ft—l) (0: —0)
—
Zthl (Ft—l - T Zthl Ft—1>

(p—=p)=
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This implies

- 2 94—1
plimy_ o A5, o* Auspv (p, T) T |20 + O (Tﬁlﬂ)_ —mg (p = p)
: 1 nC = - 2 -1
pthHOO NBNT UQBLSDV (,O, T) T-1 |:1ii)2 + Op (T—I/Q)] + mg
- 1-1
o Avspv (p,T) T »ﬁ +0, (T7V2)| —ofmd (p— p)

o |+ 0| T [2s + 0, (:H—lﬂ)] .

- 1—-1
o Avsoy (0, T) T [ + 0, (T2)] 7 = om3 (- )

21+ 0TV [1+ 0, (T-12)] "+ o2m2

Noting that
1

— —1 - - . —
140, (1)) = gy =1 0n (17,
we have
-1
plimy_ o 4AS, o Ausov (b T)T [ﬁ +0p (Tfm)} —agmi (p—p)
plimy_ BG, o2 [14+ 0 (T~ [14 0, (T/2)] 7 + o3m?
_ i) +.0, (T
- o2 + oZm?
1+ . _
= (1*77)Tp+77(p*p)+0p(T Y.

Next, for RMA-LS, define

plimy_ o 5Oy _ 020 (0. T) + mi ¥, (A=) S0 R) [-0-n -0 L R+,

- 10 2
plimy_, oy Dyp o2D (p, T) + m? [ZtT_l (Ft—l — (=17 FS) ]

Noting that

T
1_7;)24“0(1),

and as T — oo, without loss of generality, we have

D(p,T) =

T L=\ o2
7'y <Ft_1 —t-1)""y F) = 792 +0,(T7Y).
t=1 s=1 1—p
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It follows that

plnT
T

= (1-=n)E(Prmars —p) +1(pr —p) +Op <T—3/2> _

) 1 ~C
pth—wONCNT

: =
plimy o x DX

= (1-mn)

+n(pr —p) + Oy (T*3/2>
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Table 1: Comparison of Alternative Estimators in Panel AR(1) case

Bias MSE %100
T N p| AB1 AB2 AB3 LSDV HK RMA | AB1 AB2 AB3 LSDV HK RMA
5 50 03| 011 070 0.70 -0.28 -0.11 0.03 | 1.70 48.62 48.98 8.08 1.71 0.97
5 50 05| 0.03 050 050 -0.33 -0.14 0.03 | 0.62 2454 2497 11.63 2.58 0.94
5 50 09)-0.01 005 0.09 -047 -0.23 0.01] 026 039 092 2233 5.89 0.75
5 100 03| 0.11 0.70 0.70 -0.27 -0.10 0.03 | 1.49 48.64 48.98 7.78 1.38 0.54
5 100 05| 0.04 050 050 -0.33 -0.14 0.03 | 040 24.56 2498 11.26 2.20 0.54
5 100 09| 0.00 0.05 0.09 -0.47 -0.23 001 013 034 091 2191 5.46 0.39
5 200 03| 011 070 0.70 -0.27 -0.10 0.03 | 1.39 48.64 48.98 7.67 1.23 0.30
5 200 05| 004 050 050 -0.33 -0.14 0.03 | 0.29 24.57 2497 11.12 2.03 0.32
5 200 09| 000 005 0.09 -046 -0.22 0.01| 006 031 090 21.67 5.22 0.19
10 50 03] 0.05 070 0.70 -0.14 -0.03 0.03 | 0.55 48.57 48.97 2.04 0.33 0.39
10 50 05| 0.01 049 050 -0.16 -0.04 0.04 | 0.27 24.49 24.97 2.88 0.42 0.40
10 50 09]-0.01 004 0.09 -0.25 -0.10 0.01 | 0.17 0.29 0.90 6.21 1.11 0.19
10 100 03] 0.06 070 0.70 -0.14 -0.03 0.03 | 0.44 48.61 48.98 1.94 0.21 0.23
10 100 0.5 | 0.02 050 050 -0.16 -0.04 0.04 | 0.15 24.53 24.97 2.76  0.29 0.26
10 100 09| 0.00 0.05 0.09 -0.24 -0.09 0.01 | 0.08 0.26 0.90 6.06 0.98 0.10
10 200 03] 0.06 070 0.70 -0.13 -0.03 0.03 | 0.39 48.63 48.98 1.87 0.14 0.16
10 200 0.5 0.02 050 050 -0.16 -0.04 0.04 | 0.09 24.55 24.97 2.69 0.23 0.20
10 200 09| 0.00 0.05 0.09 -0.24 -0.09 0.02 | 0.04 0.25 0.90 6.00 0.92 0.07
20 50 03] 002 070 070 -0.07 -0.01 0.02 | 0.19 48.51 48.97 0.54 0.11 0.17
20 50 05| 000 049 050 -0.08 -0.01 0.03 | 0.11 24.39 24.97 0.72 0.11 0.20
20 50 09 ]-001 0.03 009 -012 -0.04 0.02 | 0.08 0.14 0.87 1.53 0.19 0.07
20 100 0.3 ] 0.03 0.70 0.70 -0.07 -0.01 0.02 | 0.13 48.56 48.97 0.49 0.06 0.11
20 100 0.5 0.01 049 050 -0.08 -0.01 0.03 | 0.06 24.46 24.96 0.67 0.06 0.14
20 100 0.9 | 0.00 0.03 0.09 -0.12 -0.04 0.02 | 0.04 0.13 0.88 1.48 0.16 0.05
20 200 03] 003 0.70 0.70 -0.07 -0.01 0.02 | 0.10 48.61 48.98 0.47 0.03 0.08
20 200 05| 001 049 050 -0.08 -0.01 0.03 | 0.03 24.50 24.97 0.64 0.04 0.12
20 200 0.9 | 0.00 0.03 009 -012 -0.04 0.02 | 0.02 0.12 0.88 1.46 0.14 0.04

Notes: AB1, AB2, and AB3, respectively represent the Arellano and Bover (1995) estimators using o, = 1,5 and
10. Entries are obtained from 10,000 replications. DGP is

Yit

Zit

where e;; & N(0,1), p; &N (1,07).

= M + Zity

=  pPZit—1 + €,
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Table 2: Comparison of LSDV and RMA in Panel AR(2) case

Bias Variance x 100 MSE x 100
f)ﬁMA P2 f’ﬁMA P2 f’ﬁMA P2
Typ N 0 ps | LSDV | RMA | LSDV | RMA | LSDV | RMA | LSDV | RMA | LSDV | RMA | LSDV | RMA
5 50 09 0.2 -0.62 -0.20 | -0.19 0.02 0.92 1.82 0.53 0.84 39.70 5.99 4.07 0.88
5 100 0.9 0.2 -062 -0.20 | -0.19 0.02 0.47 0.93 0.28 0.44 38.77 4.92 3.78 0.49
5 200 09 0.2] -062 -0.20 | -0.19 0.02 0.23 0.46 0.13 0.21 38.40 4.37 3.62 0.27
10 50 09 0.2 -0.32 -0.07 | -0.11 0.02 0.28 0.37 0.23 0.29 10.82 0.79 1.46 0.32
10 100 0.9 0.2 -032 -0.06 | -0.11 0.02 0.14 0.19 0.12 0.15 10.46 0.56 1.31 0.19
10 200 09 0.2] -0.32 -0.06 | -0.11 0.02 0.07 0.09 0.06 0.07 10.40 0.46 1.26 0.12
20 50 09 0.2] -0.16 -0.01 | -0.06 0.01 0.08 0.09 0.10 0.11 2.63 0.10 0.48 0.13
20 100 09 0.2| -0.16 -0.01 | -0.06 0.01 0.04 0.04 0.05 0.06 2.54 0.05 0.42 0.08
20 200 09 02| -0.16 -0.01 | -0.06 0.01 0.02 0.02 0.03 0.03 2.50 0.03 0.39 0.05
5 50 0.5 0.2 -0.58 -0.31 | -0.24 | -0.11 1.15 2.23 0.50 0.73 34.50 | 11.70 6.31 1.87
5 100 0.5 0.2 -0.57 -0.30 | -0.24 | -0.10 0.55 1.08 0.25 0.36 33.31 | 10.16 5.95 1.43
5 200 0.5 0.2 -0.57 -0.30 | -0.24 | -0.10 0.28 0.54 0.12 0.18 32.85 9.47 5.77 1.22
10 50 0.5 0.2 -0.28 -0.11 | -0.13 | -0.04 0.39 0.58 0.21 0.25 8.28 1.69 1.84 0.41
10 100 0.5 0.2] -0.28 -0.10 | -0.13 | -0.04 0.20 0.30 0.10 0.13 7.92 1.32 1.70 0.27
10 200 0.5 0.2] -0.28 -0.10 | -0.13 | -0.04 0.10 0.15 0.05 0.06 7.80 1.16 1.64 0.20
20 50 0.5 0.2] -0.13 -0.03 | -0.06 | -0.01 0.16 0.21 0.10 0.11 1.94 0.28 0.51 0.12
20 100 0.5 0.2 -0.13 -0.03 | -0.06 | -0.01 0.08 0.10 0.05 0.06 1.82 0.17 0.45 0.07
20 200 0.5 0.2 -0.13 -0.03 | -0.06 | -0.01 0.04 0.05 0.03 0.03 1.77 0.12 0.42 0.04
Notes: DGP is
Yit = ;T Zit,

where €;¢ (S N(0,1), p, 2N (O,ai).

Zit

P1Zit—1 + PoZit—2 + €it,
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Table 3: Comparison of LSDV and RMA with Exogeneous Variable.

Bias ‘ Variance x 100 | MSE x 100 | Rej. of t-test

AR(1) case

Ty, N p[LSDV | RMA | LSDV | RMA [ LSDV | RMA [ LSDV | RMA

5 50 09| -0.12 0.00 0.52 0.51 1.91 0.51 0.47 0.08
5 100 09| -0.12 0.00 0.26 0.25 1.65 0.25 0.72 0.08
5 200 09| -0.12 0.00 0.13 0.13 1.50 0.13 0.94 0.08
10 50 0.9 | -0.05 0.00 0.23 0.22 0.48 0.22 0.22 0.06
10 100 0.9 | -0.05 0.01 0.12 0.11 0.36 0.12 0.36 0.07
10 200 0.9 | -0.05 0.01 0.06 0.06 0.30 0.06 0.60 0.07
20 50 09| -0.02 0.00 0.11 0.11 0.14 0.11 0.10 0.06
20 100 0.9 | -0.02 0.00 0.05 0.05 0.09 0.05 0.14 0.06
20 200 09| -0.02 0.00 0.03 0.03 0.06 0.03 0.22 0.07

AR(2) case: p, = 0.2

Ty N p LSDV RMA | LSDV RMA | LSDV RMA | LSDV RMA

5 50 09| -0.13 -0.05 0.52 0.49 2.11 0.71 0.51 0.16
5 100 09| -0.12 -0.04 0.26 0.25 1.82 0.45 0.77 0.22
5 200 09| -0.13 -0.05 0.13 0.12 1.70 0.33 0.96 0.33
10 50 09| -0.06 -0.01 0.24 0.23 0.54 0.24 0.25 0.08
10 100 09| -0.06 -0.01 0.11 0.11 0.41 0.12 0.41 0.07
10 200 09| -0.06 -0.01 0.06 0.06 0.36 0.07 0.68 0.09
20 50 09| -0.02 0.00 0.11 0.11 0.15 0.11 0.11 0.05
20 100 0.9 | -0.02 0.00 0.05 0.05 0.10 0.05 0.17 0.06
20 200 09| -0.02 0.00 0.03 0.03 0.07 0.03 0.28 0.06

Notes: DGP is

Yit = M + Zit,
Zit = P1Zit—1 + PoZit—2 + Yqit + €it,
iid iid

where €;; % N(0,1), p1; * N (0,1), gix ** N (0,1) and v = 1.
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Table 4: Comparison of Alternative Estimators in Panel AR(1) under Cross Sectional Dependence

Bias MSE %100
To N p| ABl AB2 AB3 LSDV HK RMA | AB1 AB2 AB3 LSDV HK RMA
5 50 03)-004 069 07 -030 -0.13 -0.01 | 9.71 4782 4893 1584 11.20 14.63
5 50 05|-009 049 050 -0.37 -0.18 -0.02 | 1046 23.60 24.92 20.75 13.04 14.00
5 50 09)-0.10 -0.02 0.08 -052 -0.29 -0.06 | 583 268 087 34.28 1839 12.58
5 100 03 |-0.03 069 070  -0.29 -0.13 0.00 | 9.44 4790 4894 15.22 10.53 13.72
5 100 0.5 |-0.09 049 050 -0.36 -0.17 -0.01 | 10.04 23.69 24.93 20.03 12.29 13.12
5 100 09 |-0.09 -0.02 0.08 -052 -0.29 -0.06 | 558 251 086 33.84 17.88 12.15
5 200 03)|-002 069 07  -0.29 -0.12 0.00 | 9.22 4794 4894 1491 1036 13.46
5 200 05 )-008 049 050 -0.36 -0.17 -0.01 | 9.83 23.74 2492 1950 11.93 12.76
5 200 09)-009 -0.01 008 -051 -0.28 -0.06 | 537 242 085 33.18 17.30 11.55
10 50 03]-004 069 070 -0.16 -0.05 0.00 | 4.99 47.66 48.92 6.19  4.76 5.76
10 50 05]-0.08 048 050 -0.19 -0.08 0.00 | 5.20 2331 2491 736  4.85 5.05
10 50 09]-0.11 -0.06 008 -029 -0.14 -0.04| 434 234 079 11.19 5.36 3.25
10 100 0.3 ]-0.04 069 070 -0.15 -0.05 0.01 | 4.76 47.78 48.93 5.92 4.52 5.53
10 100 0.5 -0.0r 048 050 -0.19 -0.07 0.00 | 491 2346 24.92 7.02  4.53 4.76
10 100 09]-0.11 -0.06 0.08 -029 -0.14 -0.03 | 4.08 214 079 1079 499 291
10 200 03]-0.04 069 070 -0.15 -0.05 0.00 | 4.61 4785 4893 5.83  4.34 5.28
10 200 0.5 ]-0.08 048 050 -0.19 -0.07 0.00 | 4.76 23.53 24.92 6.95 4.37 4.57
10 200 09]-0.11 -0.056 0.08 -0.29 -0.14 -0.04| 392 200 077 1084 493 2.88
20 50 0.3]-003 069 070 -0.08 -0.02 0.01 | 249 4724 4890 263 224 2.57
20 50 0.5 1]-005 047 050 -0.10 -0.03 0.01 | 237 22.60 24.88 2.714 205 2.14
20 50 09 ]-009 -0.07 0.0r -0.15 -0.0r -0.01| 2.14 151 0.61 3.21 1.50 0.92
20 100 0.3 |-0.02 069 0.70 -0.08 -0.02 0.01 | 235 4746 4892 249 212 2.46
20 100 0.5 ]-0.04 048 050 -0.10 -0.03 0.01 | 223 2287 24.90 262 194 2.05
20 100 09 |-0.09 -0.06 0.0r -0.15 -0.0r -0.01| 2.06 142 0.62 3.14 143 0.87
20 200 0.3]-003 069 070 -0.08 -0.02 0.01 | 225 47.60 4892 242 201 2.32
20 200 0.5 ]-0.04 048 0.50 -0.10 -0.03 0.01 | 214 23.03 24091 255 1.85 1.94
20 200 09 |-0.09 -0.06 0.07r -0.15 -0.07 -0.01 1.98 136 0.63 3.08 1.37 0.82

Notes: See footnotes in Table 1. DGP is

Yit

Uit =

a; + pYit—1 + Uit,
0:0¢ + €t

where € N (0,1),6; “ N (1,1) and 6, % N(0,1).
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