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Abstract

The within-group estimator (same as the least squares dummy variable estimator) of the

dominant root in dynamic panel regression is known to be biased downwards. This paper studies
recursive mean adjustment (RMA) as a strategy to reduce this bias for AR(p) processes that may
exhibit cross-sectional dependence. Asymptotic properties for N,T → ∞ jointly are developed.
When

¡
log2 T

¢
(N/T )→ ζ where ζ is a non-zero constant, the estimator exhibits nearly negligible

inconsistency. Simulation experiments demonstrate that the RMA estimator performs well in
terms of reducing bias, variance and mean square error both when error terms are cross-sectionally
independent and when they are not. RMA dominates comparable estimators when T is small
and/or when the underlying process is persistent.
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1 Introduction

In small T samples, the least squares estimator of the autocorrelation coefficient ρ ∈ [0, 1), of a
stationary but persistent first-order autoregressive time series yt = α + ρyt−1 + �t, �t

iid∼
¡
0, σ2

¢
, is

biased downwards when the constant is also estimated.1 To illustrate the source of the bias, suppose

one runs least squares without a constant but on deviations from the sample mean. That is, regress

(yt − ȳ) on (yt−1 − ȳ) . The regression error �t is correlated with current and future values of yt, and

these current and future values of yt are embedded in the ȳ component of the explanatory variable.

It follows that the error term is correlated with the regressor (yt−1 − ȳ). In the panel data context,

this small T bias is also present in fixed-effects estimators. For fixed T as N → ∞, Nickell (1981)

shows that the within group (WG, which is equivalent to the least squares dummy variable method)

estimator for the dynamic panel regression model is substantially inconsistent.

This paper studies and applies the recursive-mean adjustment (RMA, henceforth) technique

to reduce bias in the estimation of linear dynamic panel data models when the dominant root is

homogeneous across individuals. The paper builds on work by So and Shin (1999a) who show that

the RMA strategy is useful in reducing bias in univariate regression and in the context of unit-root

testing [So and Shin (1999b, 2002)]. In RMA, the constant is dealt with by adjusting observations

with the common recursive mean ȳt−1 = (t− 1)−1
Pt−1

s=1 ys, instead of the sample mean. As a result,

the adjusted regressor (yt−1−ȳt−1) is orthogonal to the regression error �t because the recursive mean
does not contain any future values of yt. The RMA strategy, however, does not completely eliminate

the bias because the error term after RMA adjustment contains −(1 − ρ)ȳt−1 which is correlated

with the adjusted regressor. But when ρ = 1 in the univariate time series context, the RMA method

completely eliminates the small sample bias which explains why it has been used in unit-root testing

by Taylor (2002), Phillips, Park and Chang (2004), and Sul (2008).

We find that the RMA estimator effectively alleviates the bias problem in a finite sample compared

to the WG estimator. Similar results are obtained in a more general AR(p) model using a simple

two-step approach to reducing the bias. The performance of the RMA method is notable particularly

when ρ is near unity in which alternative bias reduction methods based on GMM/IV estimators may

not properly work due to the weak moment conditions [Brundell and Bond (1998)]. The context in

which this study is conducted is relevant to the empirical studies based on a data set with larger N

and small T , such as firm level analyses on the estimation of dynamic labor demand equation [e.g.

Blundell and Bond (1998)] or production function [e.g., Blundell, Bond and Windmeijer (2000)] or

dynamics of macroeconomic variables at the regional level [e.g. Campbell and Lapham (2004), Bun

and Carree (2005)].

The remainder of the paper is organized as follows. In the next section, we begin by discussing the

1 If there is no constant term, the bias is −2ρ/T which is trivial for even moderate T . Mariott and Pope (1954) and
Kendall (1954) discuss and characterize the first-order approximation of this bias. Several bias correction strategies
have been suggested in the literature, such as median unbiased estimation [Andrews (1993)], approximately median
unbiased estimation [Andrews and Chen (1994)], and mean unbiased estimation [Phillips and Sul (2007)].
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asymptotic properties of the panel RMA estimator for a general AR(p) model under cross-sectionally

independent observations. This section also discusses extensions of the framework to environments

with incidental trends, local-to-unity observations, and issues involved when the dominant root is

heterogeneous across individuals. Section 3 considers an environment where the observations are

cross-sectionally correlated and can be represented by a common factor structure. As in Alvarez

and Arellano (2003), Bai (2003), and Hahn and Kuersteiner (2002), our asymptotic analysis here is

based on large T and large N . Section 4 reports results of Monte Carlo experiments to evaluate the

precision and effectiveness of the RMA estimator in reducing bias and the accuracy of the asymptotic

theory for small T and moderate N sample sizes. Section 5 concludes. An appendix contains proofs

and details of many arguments made in the text.

Before proceeding, a few words on the notations might be helpful. Throughout the paper, ‘T ’

denotes the span of time-series and ‘N 0 is written as the cross-section dimension of panel, and

the symbols ‘ d→’ and ‘plimN→∞’ respectively indicate the weak convergence in distribution and

probability limit as N →∞. Also, an estimator is said to be ‘inconsistent’ if the probability limit of
an estimator is not equal to its true value as N →∞ with fixed T. For example, the WG estimator

for the first autocorrelation coefficient is inconsistent as N → ∞ with fixed T , whereas it becomes

consistent as T →∞ regardless of N . An estimator is ‘asymptotically biased’ when we compare the

magnitude of the inconsistency of an estimator for small T with that for large T .

2 Asymptotic properties when the observations are cross-sectionally
independent

The data are assumed to be generated by the following latent model.

Assumption 1. For i = 1, . . . N and t = 1, . . . T, the observations {yit} have the latent model
structure

yit = μi + βwit + zit, (1)

zit =

pX
j=1

ρjzit−j + �it, (2)

where wit is strictly exogenous, Ewitzis = 0 for all t and s, and all roots of lag polynomial of zit lie

outside the unit circle, μi
iid∼
¡
μ, σ2μ

¢
, zi1

iid∼
¡
0, σ2i /

¡
1− ρ2

¢¢
for ρ =

Pp
j=1 ρj , and �it

iid∼
¡
0, σ2i

¢
is

independent of μi and yi1, and has finite moments up to the fourth order.2

2Assumption 1 admits the level of an exogenous regressor wit. In their study on natural gas demand, Balestra
and Nerlove (1966) distinguish between level and quasi-difference exogenous regressors. They argue that per capita
income affects gas demand in levels but relative price affects gas demand in the quasi-difference. In their regression
model, yit is the quantity of natural gas, wit is the per capita income, and qit is the relative price of natural gas. The
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This data generating process (DGP) assumes that the initial condition is stationary, as in Blundell

and Bond (1998).3 The latent model (1)-(2) is observationally equivalent to the dynamic panel

regression representation

yit = ai + ρyit−1 +
p−1X
j=1

φj∆yit−j + βwit +

pX
l=1

κlwit−l + �it. (3)

where ai = (1− ρ)μi, ρ =
Pp

j=1 ρj , φj = ρj + φj−1 for j = 2, ..., p − 1 with φ1 = −
Pp

k=2 ρk , and

κl = −βρl for l = 1, ..., p. Note that so long as wit is strictly exogenous, both the WG estimator for

β in (1) - which is the static version - and in (3) - which is the dynamic version - are consistent, but

the latter is more efficient than the former for a large T .

The RMA estimator for this model is obtained from the following steps.

Step 1: (RMA Estimator for ρ) Estimate (3) with theWG estimator. Let x̂it =
Pp−1

j=1 φ̂j,WG∆yit−j+

β̂WGwit +
Pp

j=1 κ̂j,WGwit−j , and y+it = yit − x̂it. This allows (3) to be rewritten as

y+it = ai + ρyit−1 + �+it

where �+it = �it + (xit − x̂it) . Then using pooled least squares, regress¡
y+it − ȳit−1

¢
= ρ (yit−1 − ȳit−1) + eit (4)

where ȳit−1 = (t− 1)−1
Pt−1

s=1 yis, eit = − (1− ρ) z̄it−1 +�it +(xit − x̂it), and z̄it−1 = (t− 1)−1
Pt−1

s=1 zis.

This gives ρ̂pRMA, the RMA estimator of ρ.

Step 2: (RMA Estimator for φj and κl) For the other coefficients, β̂WG is consistent but φ̂j,WG
and κ̂l,WG are not. The inconsistency of φ̂j,WG and κ̂l,WG, however, can be reduced by running an

additional WG regression,

³
yit − ρ̂pRMAyit−1 − β̂WGwit

´
= ai +

p−1X
j=1

φj∆yit−j +
pX
l=1

κlwit−l + epit, (5)

quasi-difference exogenous regressor can be introduced by letting �it = γqit + �oit in (3). According to Phillips and
Sul (2007), the WG estimator for β in (1) is consistent, while the WG estimator for γ is inconsistent for fixed T as
N →∞. In this case, we can utilize the simple bias correction method for γ provided by Phillips and Sul (2007) for a
moderately large N but small T .

3Assumption 1 does not include the case of unit-root because RMA estimator becomes consistent when ρ = 1. For
the unit-root case, however, the initial condition can be set as zi1 = Op (1). See Kiviet (1995) for the impact of a
nonstationary initial condition on the inconsistency.
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where epit = �it +
¡
ρ− ρ̂pRMA

¢
yit−1 +

³
β − β̂WG

´
wit. Let us call the resulting estimator φ̂

p
j,RMA and

κ̂pl,RMA.
4

We have the following asymptotic properties of the RMA estimators for ρ and φ.

Proposition 1: (Asymptotic Properties of the RMA Estimators). Let the observations be

generated by Assumption 1.

(i) For fixed T, as N →∞, ρ̂pRMA and φ̂pj,RMA are inconsistent where

plimN→∞
¡
ρ̂pRMA − ρ

¢
= B (ρ, T ) +O

¡
T−2

¢
, (6)

plimN→∞

³
φ̂pj,RMA − φj

´
=
1

2
B (ρ, T ) +O

¡
T−2

¢
, (7)

B (ρ, T ) ≡ − (1− ρ)
C (ρ, T )

D (ρ, T )
= O

µ
lnT

T

¶
> 0,

C (ρ, T ) =
T−1X
t=1

t−1
(
2t−1

tX
h=1

hγ
(z)
h −

tX
h=1

γ
(z)
h

)
,

D (ρ, T ) = (T − 1)γ(z)0 −
T1X
t=1

t−1{γ(z)0 − 2t−1
t−1X
h=1

hγ
(z)
h },

and γ
(z)
h is the covariance between zit and zit+h.

(ii) If
¡
log2 T

¢
(N/T )→ ζ where ζ is a non-zero constant, then as T,N →∞,

√
NT

¡
ρ̂pRMA − ρ−B (ρ, T )

¢ d→ N
¡
0, 1− ρ2

¢
.

(iii)If
¡
log2 T

¢
(N/T )→ 0 as T,N →∞, then ρ̂pRMA is asymptotically distributed as

√
NT

¡
ρ̂pRMA − ρ

¢ d→ N
¡
0, 1− ρ2

¢
. (8)

The proof is given in Appendix A. As mentioned earlier, the WG estimator for β is consistent and

thus its asymptotic properties are omitted from Proposition 1.
4 In the case of quasi-difference exogenous regressor, we need an additional step to reduce the asymptotic bias for

γ. To be specific, let y++it = yit − ρ̂pRMAyit−1 −
p−1
j=1 φ̂j,RMA∆yit−j + β̂WGwit +

p
l=1 κ̂l,RMAwit−l and running WG

on y++it = ai + γqit + �pit gives γ̂RMA , the RMA estimator for γ. See Case 3 in Section 4 for the relevant Monte Carlo
simulation results.
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Remark 1 (Exact Inconsistency Formula for AR(1) Case) The explicit formula of the

inconsistency for fixed T as N →∞ is given as

B(ρ, T ) ≡ plimN→∞ (ρ̂RMA − ρ) =
ρ log T +B1,T − (1− ρ)B2,T

(T − 1)− log T + 2
1−ρB1,T −B2,T

=
ρ log T

T
+O

¡
T−2

¢
, (9)

where

B1,T =
T−1X
t=1

1

t
ρt = O (1) , B2,T = 2ρ

T−1X
t=1

1− ρt

t2 (1− ρ)2
= O (1) .

See Appendix A1 for the detailed proof. To evaluate the inconsistency exactly, we plot the incon-

sistency in Figure 1. A couple of interesting features emerge from the plot. First, the maximum

inconsistency is 0.028 which occurs when T − 1 = 13 and ρ = 0.46. Second, as predicted, the in-

consistency diminishes as ρ gets closer to unity. However, it is important to note that this small

inconsistency would affect the statistical inference when N > T.

 T

Asymptotic
Bias

Figure 1: Inconsistency of RMA estimator under AR(1) and independence

Remark 2 (Consistent Cases) There are two special cases when ρ̂RMA becomes consistent for

fixed T with N → ∞. The first case is when ρ = 1, which implies eit = �it in (4) and hence

E(yit−1eit) =E(ȳit−1eit) = 0. The second case is when T − 1 = 2, or T = 3, for any ρ ∈ [0, 1). In this
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case,

B (ρ, 3) = − (1− ρ)
E
£
(yi1 − yi1) yi1 +

¡
yi2 − 1

2 {yi1 + yi2}
¢
1
2 {yi1 + yi2}

¤
E
h
(yi1 − yi1)

2 y2i1 +
¡
yi2 − 1

2 {yi1 + yi2}
¢2i

= − (1− ρ)
E
£
y2i2 − y2i1

¤
E
h
(yi2 − yi1)

2
i = 0,

because E
¡
y2i2
¢
=E
¡
y2i1
¢
by the covariance stationarity of yit.

Remark 3 (Incidental Linear Trends) When the DGP in (1)-(2) contains an incidental linear

trend, the suggested RMA procedure is no longer valid.5 While the case of incidental trend is not

much studied in the literature of dynamic panel regressions, it is an important issue in the literature

of panel unit-root testing.6 In our treatment of the trend, we consider the latent AR(1) model of

yit = ai + bit+ zit,

zit = ρzit−1 + �it,

which is observationally equivalent to

yit = αi + βit+ ρyit−1 + �it,

where αi = ai (1− ρ) + biρ and βi = bi (1− ρ) .

Here we briefly review Sul’s (2008) detrending method before suggesting a new detrending ap-

proach to reducing the bias in finite sample. Let 2ȳit−1 be the common mean adjustment component.

Then, 2ȳit−1 = 2ai + bit+ 2z̄it−1 so that we have

yit − 2ȳit−1 = −ai +
1

2
bi + ρ (yit−1 − 2ȳit−1) + eτit, (10)

where eτit = −2 (1− ρ) z̄it−1 + �it. The result is a trendless regression with fixed-effects of −ai + 1
2bi.

The RMA estimator for ρ, ρ̂τRMA, is obtained from running WG in (10) and its inconsistency is given

by

plimN→∞ (ρ̂
τ
RMA − ρ) = G (ρ, T ) = O

¡
T−1 lnT

¢
, (11)

5According to the exact inconsistency formula of the WG estimator shown by Phillips and Sul (2007), the first order
inconsistency for panel AR(1) under incidental trend case is −2 (1 + ρ)T−1, which is twice as large as the inconsistency
under fixed effects, − (1 + ρ)T−1.

6Shin and So (1999a,1999b), for instance, suggest a recursive detrending method. Their method, however, does
not completely eliminate the incidental trend components in univariate context as noted by Sul, Phillips and Choi
(2005). Taylor (2002) and Phillips, Park and Chang (2004) propose alternative detrending methods that are effective
under unit-root case but are substantially upward biased when ρ < 1. Sul (2008) also suggests a double recursive mean
adjustment method that yields much smaller bias when ρ < 1.
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where G (ρ, T ) is presented in Appendix B2. Although this double recursive demeaning method

produces smaller upward bias than the alternative methods adopted in the panel unit-root literature,

the bias is still non-negligible when ρ < 1.

Alternatively, we suggest the following bias reduction method. First, use the WG estimator

to obtain an initial estimate of the trend coefficient b̂i from the latent model representation, and

construct the detrended observations y†it = yit − b̂it. Next, use pooled least squares to regress³
y†it − ȳ†it−1

´
on
³
y†it−1 − ȳ†it−1

´
, where ȳ†it−1 = (t− 1)−1

Pt−1
s=1 y

†
is and the regression error e†it =

− (1− ρ) z̄it−1 + �it − b∗i ρ− 1
2b
∗
i (1− ρ) t where b∗i = b̂i − bi. Call the estimate ρ̂IRD. Notice that the

trend is not yet completely removed because the remnants of the trend now sit in the regression error.

To deal with this, update the trend coefficients by WG estimation of yit − ρ̂IRDyit−1 = ai + βit+ ε†it
and call the estimated trend coefficient β̂0i,WG. Update the trend estimate b̂0i = β̂0i,WG/ (1− ρ̂IRD) .

If ρ̂IRD ≥ 1, set b̂0i = b̂i. Continue until convergence. For ρ̂IRD, we have the weak convergence result

plimN→∞ (ρ̂IRD − ρ) = B (ρ, T ) +
1

2

(1− 2ρ)
¡
1− ρ2

¢
T

+O
¡
T−2

¢
, (12)

where B (ρ, T ) is given in Proposition 1. The proof is presented in Appendix B1. In (12), the second

term has a faster diminishing speed than that of B (ρ, T ) , but its magnitude is larger than that of

B (ρ, T ) even for a moderately large T . This inconsistency, however, is far smaller than that of the

WG estimator, as illustrated in Figure 2.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

RMAtau IRD

WG RMA without trend

Figure 2: Comparison of the absolute asymptotic biases for incidental linear trend case

(T = 50, N = 1000)

Figure 2 plots the absolute asymptotic bias of ρ̂IRD, ρ̂τRMA and ρ̂WG for a large N under incidental
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linear trends. As mentioned earlier, ρ̂τRMA produces no asymptotic bias when ρ = 1, but significantly

upward biased when ρ < 1. Consequently it is even dominated by ρ̂WG when ρ < 0.8 as displayed

in Figure 2. By contrast, the asymptotic bias of ρ̂IRD is rather modest over the entire range of ρ.
Whilst the asymptotic bias of ρ̂IRD varies slightly with T and ρ, the size of the asymptotic bias is

far smaller than those of ρ̂τRMA and ρ̂WG except when ρ = 1. This is what the asymptotic theory in

(12) predicts. Note that the asymptotic bias of ρ̂IRD declines with ρ until it is kinked when ρ is near

unity. This kink is due to the truncation of ρ̂IRD in the iterative procedure. The figure also compares

the asymptotic bias of ρ̂IRD with that of ρ̂RMA when there is no trend. ρ̂IRD also outperforms ρ̂RMA
in the no trend case in most regions of ρ.

Remark 4 (Weakly integrated and local-to-unity processes) Since the RMA estimator

becomes consistent when ρ → 1 as shown above, one should anticipate that the estimator exhibits

only modest inconsistency under local-to-unity. To confirm this guess, let ρ = 1−c/Tα for 0 < α ≤ 1
and some c > 0. When 0 < α < 1, the process is said to be nearly stationary (Giraitis and Phillips,

2006) or weakly integrated (Park, 2003). When α = 1, the process is said to be local-to-unity. In

either case, we have

plimN→∞ (ρ̂RMA − ρ) ≡ lnT
T

+O

µ
1

T 1+α

¶
+O

¡
T−2

¢
.

It can be seen that the inconsistency is of order O (lnT/T ) so that the first order inconsistency is

larger than that of WG estimator. However, as we will show shortly, the overall inconsistency of the

RMA estimator is much smaller than that of WG estimator.

Remark 5 (GLS Demeaning Procedure) One might wonder how the generalized least squares

(GLS) adjustment proposed by Elliott, Rothenberg and Stock (1996), originally designed for efficient

unit-root tests, would compare to the RMA estimator if it were employed to reduce the bias in the

local-to-unity environment. To explore this, let us assume

ρ = 1− c

T
.

The GLS correction requires a quasi-demeaning of the observations using the factor of 1− 7/T.
Define

ygit =

(
yit −

¡
1− 7

T

¢
yit−1 if t > 1

yi1 if t = 1
, Zt =

(
1− 7

T if t > 1

1 if t = 1
.

Next, let

uit = yit −
PT

t=2 y
g
itZtPT

t=2 Z
2
t

.
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Then the estimator ρ̂GLS is obtained by running pooled least squares on uit = ρuit−1 + εit, where

ρ̂GLS = ρ̂long +Op

¡
T−1

¢
and ρ̂long is the pooled least-squares estimator from regressing (yit − yi1) on (yit−1 − yi1) . For a local

parameter value of c = 7, the inconsistency in the GLS-corrected estimator becomes

plimN→∞ (ρ̂GLS − ρ) =
35

T
+O

¡
T−2

¢
. (13)

As shown in Appendix C, the second order term in (13) includes a large component such as 49/T 2,

which causes ρ̂GLS to be inconsistent for moderately T as large as 100. A quick evaluation of the

asymptotic bias in ρ̂RMA in comparison to ρ̂GLS and ρ̂long is presented in Figure 3 under the simulation

environment of N = 2000 and c = [0, 14] for T ∈ {100, 500}. As can be seen from Panel A, the

inconsistency of ρ̂RMA is in general smaller than that of ρ̂GLS except when 1 < c < 5. Moreover, the

dominance of ρ̂RMA over ρ̂GLS gets stronger with larger T . As exhibited in Panel B, when T =500,

the simulated inconsistency of ρ̂RMA is much smaller than that of ρ̂GLS for all c values. In sum, this

simulation experiment suggests that the bias reduction provided by RMA is superior to that of GLS

estimator when ρ is near unity.7

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

RMA
GLS
Long Differencing
45 degree line

   c=14    c=13    c=12    c=11   c=10     c=9     c=8     c=7      c=6      c=5     c=4     c=3      c=2      c=1     c=0

0.972

0.976

0.980

0.984

0.988

0.992

0.996

1.000

0.972 0.974 0.976 0.978 0.980 0.982 0.984 0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.000
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GLS
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  c=14    c=13    c=12    c=11   c=10     c=9     c=8     c=7      c=6      c=5     c=4     c=3      c=2      c=1     c=0

Panel A: T = 100, N = 2000 Panel B: T = 500, N = 2000

Figure 3: Comparison of Inconsistencies among ρ̂RMA, ρ̂GLS, and ρ̂long

Remark 6 (Heterogeneous Panels) In the current study, the dominant root, ρ, is assumed

to be homogeneous across the cross-section. In practice, the homogeneity restriction can be tested

using formal inference techniques [e.g. Pesaran and Yamagata (2008)]. If the homogeneity restriction
7More results on the simulation experiment are available at http://www3.uta.edu/choi/research.htm.
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is rejected, one may consider the pooled mean group RMA estimator. Pesaran and Smith (1995)

study the pooled mean group (PMG) estimator for nonstationary panel data, and Pesaran, Shin and

Smith (1999) extend the analysis to dynamic panel regressions under cross-sectional independence.

Pesaran (2006) also develops the PMG estimator under cross-sectional dependence. In general, the

consistency of the PMG estimator requires the sequential limit of T → ∞ first, and N → ∞ next.

For fixed T and N → ∞, however, the PMG estimator is inconsistent just like the WG estimator.

Since both univariate and pooled RMA estimators are consistent as T →∞, the asymptotic property

of the PMG-RMA estimator can be derived under sequential limits. A more interesting but also more

challenging environment is the case for fixed T and N → ∞ in which the asymptotic properties of

the PMG-RMA estimator are yet known. We leave this important issue for future research.

3 Asymptotic Properties with Cross-sectionally Correlated Obser-
vations

In this section we adapt the RMA estimator to dynamic panel data models with cross-sectionally

dependent observations where the dependence arises from a common factor specification. The envi-

ronment under consideration is again the one in which observations are weakly stationary and are

generated by the following assumption.

Assumption 2. For i = 1, . . . N and t = 1, . . . T, the observations {yit} are generated by the latent
model

yit = μi + zit, (14)

zit =

pX
j=1

ρjzi,t−j + uit, (15)

uit =
KX
s=1

δsiθst + �it = δ0iθt + �it, (16)

where the idiosyncratic term, �it, is assumed to be iid
¡
0, σ2i

¢
and σ2i < ∞ for all i. Also, θst

and �it are assumed to be independent of each other. The common factor has E kθstk4 < ∞,

plimT→∞T−1
PT

t=1θ
2
st = σ2sθ with factor loadings of kδsik ≤ D <∞, and plimN→∞ kδ0δ/N −Mδk =

0 with δ = (δ1, ..., δN)
0 for some Mδ > 0, where δi = (δ1i,..., δKi)

0 .

This latent model has the observationally equivalent factor representation

yit = μi + δ0iFt + zit, (17)

10



where Ft = (F1t, ..., Fkt)
0, Fst =

P∞
j=0 ρ

jθst−j and zit =
P∞

j=0 ρ
j�it−j . Phillips and Sul (2007) show

that the N−asymptotic bias of the WG estimator becomes ‘random’ under the cross-sectional de-

pendence. To derive the asymptotic ‘random’ bias formula under cross-sectional dependence of yit,

we first introduce the following notation. Let

ρ̂F,WG = ρ+

PT
t=2

¡
Fst−1 − F̄s

¢ ¡
θst − θ̄s

¢PT
t=2

¡
Fst−1 − F̄s

¢2 (18)

be the WG estimator of ρ from the regression of Fst = ms + ρFst−1 + θst where F̄s = (T −
1)−1

PT−1
t=1 Fst−1 for s = 1, ...,K. According to Phillips and Sul (2007), the WG estimator ρ̂WG|CSD

in (14)-(16) can be decomposed into

ρ̂WG|CSD = (1− η) ρ̂WG|CSI + ηρ̂F,WG + op
¡
T−1

¢
where ρ̂WG|CSI represents theWG estimator under cross-sectional independence, η = m2

δσ
2
θ

¡
σ2 +m2

δσ
2
θ

¢−1
,

m2
δ = (NK)−1

PN
i=1

PK
s=1 δ

2
si, σ

2
θ = (KT )−1

PK
s=1

PT
t=1 θ

2
st, and σ

2 = N−1T−1
PN

i=1

PT
t=1 �

2
it. Here

η can be interpreted as the degree of cross-sectional dependence, such that η = 1 for perfect cross-

sectional dependence and η = 0 for cross-sectional independence. Since ρ̂F,WG does not depend

on the dimension of cross-section (N), the N−asymptotic bias for ρ̂WG|CSD now depends on the

inconsistency of ρ̂F,WG. That is, as shown by Phillips and Sul (2007),

plimN→∞(ρ̂WG|CSD − ρ) = − (1− η)
1 + ρ

T
+ η (ρ̂F,WG − ρ) + op

¡
T−1

¢
,

as N →∞.
Similarly, we can directly apply this approach to the RMA estimator by letting

ρ̂F,RMA = ρ+

PT
t=2

¡
Fst−1 − F̄st−1

¢ ¡
θst − (1− ρ) F̄st−1

¢PT
t=2

¡
Fst−1 − F̄st−1

¢2 (19)

be the RMA estimator from Fst − F̄st−1 = ρ
¡
Fst−1 − F̄st−1

¢
+ εst where εst = θst − (1− ρ) F̄st−1

and F̄st−1 = (t − 1)−1
Pt−1

j=1 Fsj . And let ρ̂RMA|CSD be the RMA estimator under cross-sectional

dependence. Then the N−asymptotic bias of the RMA estimator can be shown as follows.

Proposition 2: (N−asymptotic bias under cross-sectional dependence). Under Assumption
2, for N →∞ first and then T →∞, the probability limit of ρ̂RMA|CSD is given by

plimN→∞
¡
ρ̂RMA|CSD − ρ

¢
= (1− η)B (ρ, T ) + η (ρ̂F,RMA − ρ) + op

¡
T−1

¢
, (20)

where B(ρ, T ) is shown in Proposition 1.

The proof is presented in Appendix D. Note that the asymptotic bias of ρ̂RMA|CSD now depends on

11



three components: (i) the degree of cross-sectional dependence, η; (ii) the inconsistency of ρ̂RMA|CSI,

the RMA estimator under cross-sectional independence; and (iii) the bias of the time-series estimator

ρ̂F,RMA (K = 1 case). Obviously, Proposition 1 applies when η = 0, while the inconsistency becomes

purely random when η = 1. As K → ∞, however, the asymptotic bias expression is identical to
that in Proposition 1 regardless of the value of η. But the direction of the inconsistency is not clear

because ρ̂F,RMA is downward biased for a small T while B (ρ, T ) is always positive. Unfortunately

the exact finite sample bias formula for ρ̂F,RMA is available yet.

Figure 4 demonstrates the ‘randomness’ of the asymptotic bias by plotting the empirical distri-

butions of ρ̂WG|CSD and ρ̂RMA|CSD for N = 2000 and T = 20 with various values of K = {1, 10, 50}.
When K = 1, the empirical mean of ρ̂RMA|CSD is very close to the true value of ρ = 0.5. This is

the case when the asymptotic positive bias from pooling is offset by the negative univariate bias of

ρ̂F,RMA. As K increases, the empirical distribution of ρ̂RMA|CSD becomes tighter but the mean value

also increases slightly. By contrast, ρ̂WG|CSD has a noticeable downward asymptotic bias for all K

although it tends to decrease as K grows. Overall, ρ̂RMA|CSD dominates ρ̂WG|CSD and the dominance

stands out when the factor number is relatively small.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

̂WG with K  1

̂WG with K  10

̂WG with K  50

̂RMA with K  1

̂RMA with K  10

̂RMA with K  50

Figure 4: Random Asymptotic Bias under Cross-sectional Dependence, T = 20, N = 2000, ρ = 0.5

δis ∼ iidN (0, 1) , θst ∼ iidN (0, 1) , �it ∼ iidN (0, 1)
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4 Monte Carlo Experiments

In this section, we report the results of Monte Carlo experiments designed to examine the precision

and the effectiveness of bias reduction achieved by the RMA estimators in small T and moderate

N samples for ρ ∈ [0, 1). We vary the environments by the autoregressive order and by the degree
of cross-sectional dependence. To economize on space, we have been selective in terms of which

results to report especially when log T (N/T ) is relatively large because in this case B (ρ, T ) remains

in the distribution of the RMA estimator. An extensive set of simulation results are available at the

author’s web site.8 We consider four cases here.

Case 1: AR(1) with cross-sectionally independent observations. For this widely studied environ-

ment, several bias reduction methods have been proposed. We compare two of these to RMA and

WG estimators. The first is the GMM estimator studied by Arellano and Bover (1995, hereafter AB)

and the other is the estimator proposed by Hahn and Kuersteiner (2002, hereafter HK). The data

generating process is,

yit = μi + zit,

zit = ρzit−1 + �it,

where �it
iid∼ N (0, 1), μi iid∼ N

¡
1, σ2μ

¢
. As in Assumption 1, the initial observation obeys yi1 =

μi+ zi1
iid∼ N

³
1, σ2μ +

1
1−ρ2

´
, which produces weakly stationary sequences of yit.We consider sample

sizes of N ∈ {50, 100, 200} and T ∈ {6, 11, 21} so that the time series observations used in the
regression are T0 = T − 1 ∈ {5, 10, 20}.

The asymptotic variance of the AB estimator depends on the nuisance parameter ψ = σ�/σμ =

1/σμ, whereas the variances of RMA, WG, and HK do not. To explore the potential small-sample

dependence of the AB estimator on the variability of the individual-specific effect, we consider alterna-

tive values of relative variance of the individual-specific component of the error term, σμ ∈ {1, 5, 10},
or ψ ∈ {1, 0.2, 0.1}.

Table 1 reports the bias and mean-square error of the four estimators under comparison. The

RMA and AB estimators are seen to be upward biased while WG and HK are biased downwards.

RMA compares well to HK for small T . Although the relative performance of HK improves as

T grows, when T0 = 5 for example, the HK estimator bears substantial downward bias (−0.22 for
ρ = 0.9) even when N is as large as 200. For relatively large T , the performance of HK is comparable

to that of RMA particularly when ρ is relatively small. The GMM estimator due to AB performs

well for ψ = 1, but its performance deteriorates substantively for ψ = 0.2 and ψ = 0.1. Even for

ψ = 1, it is dominated by RMA for moderate values of ρ. In sum, RMA dominates HK both in

terms of attenuating bias and in precision for small T and it is typically more precise than AB, whose

8Full reports (MS excel format) are available at http://www3.uta.edu/choi/research.htm.

13



performance is quite sensitive to ψ. The dominance of RMA over HK is particularly noticeable for

small T or for highly persistent ρ when T is relatively large.

Case 2: AR(2) with cross-sectionally independent observations. Since it is not straightforward to
correct for bias with HK or AB in the AR(2) case, we only report the performance results for RMA

in comparison with WG. For simplicity but without loss of generality, the DGP for this case is

yit = μi + zit,

zit = ρ1zit−1 + ρ2zit−2 + �it,

where �it
iid∼ N (0, 1), μi iid∼ N

¡
0, σ2μ

¢
. We consider the lag coefficients (ρ, ρ2) ∈ {(0.9, 0.2), (0.5, 0.2),

(0.9, 0.3), (0.5, 0.3), (0.9, 0.4), (0.5, 0.4)} where ρ = ρ1 + ρ2. Here we report the results for (ρ, ρ2) ∈
{(0.9, 0.2), (0.5, 0.2)} only because the results of the other cases are largely similar.

Table 2 reports the bias, variance and mean square error (MSE) of RMA and WG. We note

that the bias of WG in the AR(2) case is much more serious than that in AR(1) environment. For

example, when ρ = 0.9 and N = 50, the WG bias for ρ is -0.62, -0.32, -0.16 for T0 = 5, 10, and

20 respectively, whereas the biases were -0.47, -0.25, and -0.12 for the corresponding values of T0 in

AR(1) case. As in AR(1) case, the bias hinges upon T rather than N . Although the variance of

RMA is slightly larger than that of WG, the MSE of RMA is consistently much smaller than that

of WG estimator.

Case 3: AR(1) and AR(2) with exogenous regressor. Since Phillips and Sul (2007) show that β̂WG
is asymptotically unbiased when the exogenous variable enters with a level effect, we concentrate on

the following DGP that allows an exogenous variable to enter in difference form,

yit = μi + zit,

zit = ρ1zit−1 + ρ2zit−2 + γqit + �it,

where �it
iid∼ N (0, 1), μi iid∼ N (0, 1) and qit

iid∼ N (0, 1). We set γ = 1 and report the size of the t-test

under the null hypothesis of γ = 1. Among the various values for the parameters considered, we

report in Table 3 only the results for ρ = 0.9 for the AR(1) case and ρ = 0.9 and ρ2 = 0.2 for the

AR(2) case (again ρ = ρ1 + ρ2).

Several features of Table 3 are noteworthy. First, the WG estimator for γ is biased downwards

in both the AR(1) and AR(2) cases and the bias directly distorts the size of the t-test. Whereas

the size distortion for RMA is relatively small and remains fairly constant, the distortion of the WG

based t-test increases with N . At the nominal size of 0.05, the size of t-test based on WG estimator

is as large as 0.94 when N = 200 and T0 = 5 in AR(1) case, while the corresponding size of t-test

based on RMA is merely 0.08. Second, RMA reduces the bias and variance significantly for all cases
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considered. However, in the AR(2) case for very small T , there is some size distortion in the RMA

based t-test when N is relatively large, mainly due to the large second order bias of RMA. The size

distortion, however, diminishes quickly as T increases.

Case 4: AR(1) with cross-sectionally dependent observations. The DGP for this case is

yit = ai + ρyit−1 + uit,

uit = δiFt + �it,

where �it
iid∼ N (0, 1) , δi

iid∼ N (1, 1) and Ft
iid∼ N (0, 1). We consider exactly the same simulation

environment with that of Case 1 except that the error term is now cross-sectionally correlated as

reflected by the common factor Ft. Table 4 reports the bias and MSE of the four estimators under

comparison. As in Table 1, we present the AB estimator for three different values of relative variance

of the individual-specific component of the error term.

We first note from Table 4 that the bias of RMA estimator is smaller for moderate ρ and/or large

T than when the observations are cross-sectionally independent. This contrasts to the competing es-

timators whose biases are larger under cross-sectional dependence. This result is consistent with the

predictions of Proposition 2 that the bias of RMA (WG) is smaller (larger) under cross-sectional de-

pendence. Consequently, the performance of RMA estimator stands out even when the observations

are cross-sectionally dependent. The dominance of the RMA estimator is particularly noticeable

when N and T are moderate. Unlike the case of cross-sectional independence, the RMA estimator

continues to dominate the alternative estimators even when N and T are large. Take N = 200 and

T = 20 for instance, the HK estimator had a comparable performance to the RMA estimator under

cross-sectional independence, but the bias of RMA estimator is now much smaller when observa-

tions are cross-sectionally correlated. The story remains much the same in terms of MSE. Although

the MSE of RMA estimator is larger than when the observations are cross-sectionally independent

mainly due to the increased variance, it decreases more rapidly than the alternative estimators as N

and T grow. As a result, the RMA estimator has smaller MSE than the other estimators particularly

when the underlying processes are highly persistent.

To summarize, our simulation results suggest that the finite sample performance of the RMA

estimator is appealing especially when the observations are cross-sectionally correlated.

5 Conclusion

In this paper, we extend the idea of recursive mean adjustment as a bias reduction strategy to es-

timating the dominant root in dynamic panel data regressions. Specifically we develop the RMA

estimators under general AR(p) process under both cross-sectional independence and dependence.

15



We show that the RMA estimator delivers effective bias reduction when the observations are inde-

pendent across individuals. When the observations are correlated across individuals and when this

dependence arises from an underlying factor structure, we find that effective bias reduction still can

be achieved by using the RMA estimator. Our simulation results based on small T and larger N

suggest that the RMA estimator dominates comparable estimators in terms of bias, variance and

MSE reduction both when error terms are cross-sectionally independent and when they are cross-

sectionally correlated. This finding still holds in the presence of exogenous regressors especially in

terms of t-test performance.

Overall our method is efficient and effective in reducing bias and more importantly is straight-

forward to implement. In light of the fact that mean and median unbiased estimators are generally

unavailable for higher ordered panel autoregression models, the recursive mean adjustment procedure

advocated in this study is believed to fill an important gap in the dynamic panel literature.
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Technical Appendix

Define z̄it−1 = t−11
Pt1

s=1 zis and ȳit−1 = t−11
Pt1

s=1 yis where t1 = t−1 for the notational convenience.

Appendix A: Proof of Proposition 1

First we consider AR(1) case, and then use the result to establish the proof of Proposition 1. Note

that for general AR(p) case, we have

E
1

NT

NX
i=1

TX
t=1

(zit − z̄it)
2

= γ
(z)
0 +
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TX
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t
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tX
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T

TX
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t
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(z)
0 −

2

t
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hγ
(z)
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Hence for AR(1) case, we have

E
1

NT

NX
i=1

TX
t=1

(zit − z̄it)
2 =

σ2

1− ρ2
+O

µ
log T

T

¶
→ σ2

1− ρ2
as T →∞, (A-1)

where σ2 = N−1PN
i=1 σ

2
i and σ2i = T−1

PT
t=1 �it <∞ for all i.

Appendix A1: Proof of Remark 1 From a standard central limit theorem for panel autore-

gressive processes, we have

1√
NT

NX
i=1

TX
t=2

zit−1�it
d→ N

µ
0,

σ4

1− ρ2

¶
.

From (A-1), we have

√
NT

Ã
NX
i=1

TX
t=2

zit−1εit

!"
NX
i=1

TX
t=2

(zit−1 − z̄it−1)
2

#−1
d→ N

¡
0, 1− ρ2

¢
.

Now note that

√
NT (ρ̂RMA − ρ) =

√
NT

³PN
i=1

PT
t=2 zit−1�it

´
PN

i=1

PT
t=2 (zit−1 − z̄it−1)

2
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NT
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(A-2)
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From direct calculation, we have

B (ρ, T ) = − (1− ρ)plimN→∞

1
N

PN
i=1

PT
t=2 (zit−1 − z̄it−1) z̄it−1

1
N

PN
i=1

PT
t=2 (zit−1 − z̄it−1)

2

=
ρ log T +B1T − (1− ρ)B2T

T − 1− log T + 2
1−ρB1T −B2T

=
ρ logT

T
+O

¡
T−2

¢
where

B1T =
T−1X
t=1

1

t
ρt = O (1) , B2T = 2ρ

T−1X
t=1

1− ρt

t2 (1− ρ)2
= O (1) .

For calculating its variance, first consider

E

Ã
TX
t=2

zit−1z̄it−1 −
TX
t=2

z̄2it−1

!2
=

T−1X
t=1

1

t
σ2z +O (1) = O (log T ) .

Hence the variance of the second term in (A-2) is given by
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Therefore,
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³PN
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so that as T,N →∞ but log T
q

N
T → 0, we have

√
NT (ρ̂RMA − ρ)

d→ N
¡
0, 1− ρ2

¢
.

If N/T 3 → 0 but log T
q

N
T → ζ where ζ is a constant, then we have

√
NT (ρ̂RMA − ρ−B (ρ, T ))

d→ N
¡
0, 1− ρ2

¢
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NT (ρ̂RMA − ρ)
d→ N

¡
ζB (ρ, T ) , 1− ρ2

¢
.
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Appendix A2: Proof of (6) in Proposition 1 For ease of reference, we restate (4) here as

y+it − ȳit−1 = ρ (yit−1 − ȳit−1) + eit,

where

eit = − (1− ρ) z̄it−1 + �it +

p−1X
j=1

³
φj − φ̂j,WG

´
∆zit−j .

Noting that E
PT

t=p∆zit−j z̄it−1 = O (1) and plimN→∞
³
φ̂j,WG − φj

´
= O

¡
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¢
, we have
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PN
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∆zit−j

i
PN

i=1

PT
t=2 (yit−1 − ȳit−1)

2

= B (ρ, T ) +
O
¡
T−1

¢
D (ρ, T )

= B (ρ, T ) +O
¡
T−2

¢
,

which establishes (6) in the text.

Appendix A3: Proof of (7) in Proposition 1 For the simplicity of analysis, we consider an

AR(2) case and then show how the logic can be generalized to an AR(p) case. First, consider the

regression error of

�†it = �it −
¡
ρ̂pRMA − ρ

¢
yit−1.

Using the fact that (yit−1 − μi)− (yit−2 − μi) = (yit−1 − yit−2) where μi = E (yit) , the inconsistency

of the pooled estimator φ̂pRMA can be written as

φ̂pRMA − φ = −
¡
ρ̂pRMA − ρ

¢ PN
i=1

PT
t=2 (yit−1 − yit−2) (yit−1 − yi·−1)PN
i=1

PT
t=1 (yit−1 − yit−2)

2| {z }
A

+

PN
i=1

PT
t=2 (yit−1 − yit−2) (�it − �i·)PN

i=1

PT
t=2 (yit−1 − yit−2)

2
,

where yi·−1 and �i· are time-series averages. As N →∞, the term labeled A above has the limiting

value of

plim
N→∞

PN
i=1

PT
t=2 (yit−1 − yit−2) (yit−1 − yi·−1)PN
i=1

PT
t=2 (yit−1 − yit−2)

2
=

PT
t=2

³
γ
(z)
0 − γ

(z)
1

´
2
PT

t=2

³
γ
(z)
0 − γ

(z)
1

´ = 1

2
.
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It follows that

plim
N→∞

³
φ̂pRMA − φ

´
= −1

2
plim
N→∞

¡
ρ̂pRMA − ρ

¢
+O

¡
T−1

¢
plim
N→∞

1

N

NX
i=1

TX
t=2

(yit−1 − yit−2) (�it − �i·) .

Noting that the AR(2) model has the representation of

yit =
c1

1− λ1L
�it +

c2
1− λ2L

�it,

where λ1 and λ2 are the roots of
¡
1− ρ1z − ρ2z

2
¢
, and because

E
1

T

⎛⎝ ∞X
j=0

csλ
j
suit−j

⎞⎠Ã TX
t=1

�it

!
−E

1

T

⎛⎝ ∞X
j=0

csλ
j
suit−j−1

⎞⎠Ã TX
t=1

�it

!

= cs (1− λ1)− cs

µ
T − 1
T

¶
(1− λ1) +O

¡
T−2

¢
= O

¡
T−1

¢
for s = 1, 2,

where

c1 = λ1 (λ1 − λ2) and c2 = −λ2/ (λ1 − λ2) .

It follows that

plimN→∞
1

N

NX
i=1

TX
t=2

(yit−1 − yit−2) (�it − �i·) = −plimN→∞
1

N

NX
i=1

TX
t=2

(yit−1�i· − yit−2�i·) = O
¡
T−1

¢
,

or equivalently

plimN→∞

³
φ̂pRMA − φ

´
= −1

2
plimN→∞

¡
ρ̂pRMA − ρ

¢
+O

¡
T−2

¢
.

It is apparent that this logic goes through in the AR(p) case. We can therefore say

plim
N→∞

³
φ̂
p

RMA
− φ

´
= −1

2
plim
N→∞

¡
ρ̂pRMA − ρ

¢
+ plim

N→∞

ÃPN
i=1

PT
t=1 zitũitPN

i=1

PT
t=1 z

2
it

!
= −1

2
plim
N→∞

¡
ρ̂pRMA − ρ

¢
+O

¡
T−2

¢
.

Appendix A4: Proof of (8) in Proposition 1 Let

√
NT

¡
ρ̂pRMA − ρ

¢
=
√
NT

C1,NT

DNT
+
√
NT

C2,NT

DNT
,
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where

C1,NT = − (1− ρ)
1

NT

NX
i=1

TX
t=2

[(yit−1 − ȳit−1) z̄it−1] +
1

NT

Ã
NX
i=1

TX
t=2

zit−1�it

!
C1,NT

DNT
= BNT (ρ, T ) +Op

µ
1√
NT

¶
,

note that plimN→∞BNT (ρ, T ) = B (ρ, T ) , and

C2,NT =
1

NT

NX
i=1

TX
t=2

⎡⎣(yit−1 − ȳit−1)
p−1X
j=1

³
φj − φ̂j,WG

´
∆zit−j

⎤⎦ = Op

Ãr
1

NT 3

!
.

Since ³
φj − φ̂j,WG

´
= Op

µ
1√
NT

¶
+O

µ
1

T

¶
,

and
1

NT

NX
i=1

TX
t=2

(yit−1 − ȳit−1)∆zit−j = Op

µ
1√
NT

¶
.

Finally we have

√
NT

¡
ρ̂pRMA − ρ

¢
=
√
NT

C1,NT

DNT
+Op

Ã
log T

r
N

T

!
+Op

µ
1

T

¶
.

Hence as N,T →∞ but , log T
q

N
T → ζ, we have

√
NT

¡
ρ̂pRMA − ρ−B (ρ, T )

¢ d→ N
¡
0, 1− ρ2

¢
or √

NT
¡
ρ̂pRMA − ρ

¢ d→ N
¡
ζB (ρ, T ) , 1− ρ2

¢
.

Appendix B: Proof of Remark 3 (Linear Trend Case)

Appendix B1: Proof of Iterative Recursive Detrending in (12) We address ρ̂IRD by con-

sidering the AR(1) case with incidental trends and then discuss how it can be generalized to the

AR(p) case. We work with the latent model and whether zit is observable does not matter for this

analysis. The point estimate b̂i = βi,WG/(1 − ρ̂WG) becomes equivalent to the point estimate from

the regression for moderately large T ,

yit − ρ̂WGzit−1 = μi + bit+ �it + (ρ− ρ̂WG) zit−1.
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It follows that

b̂i − bi =

PT−1
t=1

³
t− T−11

PT−1
t=1 t

´ h³
�it − T−11

PT
t=2 �it

´
+ (ρ− ρ̂WG)

³
zit−1 − T−11

PT
t=2 zit−1

´i
PT−1

t=1

³
t− T−11

PT−1
t=1 t

´2 ,

and by direct calculation,

E
³
b̂i − bi

´2
= 12

1

T 3
σ2� +O

¡
T−2

¢
.

Now let b∗i =
³
b̂i − bi

´
, then ρ̂IRD can be obtained either from

y†it = yit − b̂it = μi +
³
bi − b̂i

´
t+ zit = μi − b∗i t+ zit

or from

y†it = μi (1− ρ)− b∗i ρ− b∗i (1− ρ) t+ ρy†it−1 + �it.

Using the fact that

ȳ†it−1 =
1

t1

t1X
s=1

y†is = μi + z̄it−1 −
1

2
b∗i t,

it follows that

y†it − ȳ†it−1 = ρ
³
y†it−1 − ȳ†it−1

´
+

½
− (1− ρ) z̄it−1 + �it − b∗i ρ−

1

2
b∗i (1− ρ) t

¾
,

y†it−1 − ȳ†it−1 = −
1

2
b∗i t+ b∗i + (zit − z̄it−1) .

Note that

E
TX
t=1

³
y†it−1 − ȳ†it−1

´2
= D (ρ, T ) +O (1) .

Using these results, we have

ρ̂IRD − ρ

=

Ã
NX
i=1

TX
t=2

³
y†it−1 − ȳ†it−1

´2!−1

×
NX
i=1

TX
t=2

³
y†it−1 − ȳ†it−1

´½
− (1− ρ) z̄it−1 + �it + b∗i ρ+

1

2
b∗i (1− ρ) t

¾
.
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From the direct calculation, we have

E
TX
t=2

(zit−1 − z̄it−1) b
∗
i t = O

¡
T−1

¢
, Eb∗i

TX
t=2

(t− 2) z̄it−1 = O
¡
T−1

¢
, E (b∗i )

2
TX
t=2

(t− 2) = O
¡
T−1

¢
,

but since

E (b∗i )
2

TX
t=2

(t− 2) t = 4σ2� +O
¡
T−1

¢
,

Eb∗i

TX
t=2

(t− 2) �it = σ2� +O
¡
T−1

¢
,

it follows that

(1− ρ)
1

4
E

NX
i=1

(b∗i )
2

TX
t=2

(t− 2) t = (1− ρ)σ2� +O
¡
T−1

¢
,

1

2
Eb∗i

TX
t=2

(t− 2) �it =
ÃPT

t=2 (t− t̄) (�it − �̄i)PT
t=2 (t− t̄)2

!
TX
t=2

(t− 2) �it =
1

2
σ2� +O

¡
T−1

¢
.

The sum of the O (1) terms is

(1− ρ)σ2� −
1

2
σ2� =

1

2
(1− 2ρ)σ2� ,

while the denominator is

D (ρ, T ) =
T

1− ρ2
σ2� +O (1) .

It follows that the second stage inconsistency of the IRD estimator is

plimN→∞ (ρ̂IRD − ρ) = B (ρ, T ) +
1

2
(1− 2ρ)D (ρ, T )−1 +O

¡
T−2

¢
.

Appendix B2: Proof of Double Recursive Detrending in (11) From direct calculation, we

obtain the inconsistency of ρ̂τRMA as

plimN→∞ (ρ̂
τ
RMA − ρ) = G (ρ, T ) =

CT − FT/T1
AT −BT/T1

− ρ

where

AT = T1 + 4
TX
t=2

µ
1

t1

¶2 1− ρ2

(1− ρ)2

µ
t1 − 2ρ

1− ρt1

1− ρ2

¶
− 4
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µ
1
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¶µ
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¶
,
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BT =

µ
T1 +
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1− ρ

PT−2
k=1 (1− ρk)

¶
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Appendix C: Proof of Remark 5 (GLS-Demeaning)

Assume the true DGP is given by

yit = ai + zit, zit = ρT zit−1 + �it, ρT = 1−
c

T
.

Define

ygit =

(
yit −

¡
1− c

T

¢
yit−1 if t > 1

yi1 if t = 1
, Zt =

(
1− c

T if t > 1

1 if t = 1
,

and

uit = yit −
PT

t=2 y
g
itZtPT

t=2 Z
2
t

.

Note that
TX
t=1

Z2t = 1 +
TX
t=2

(1− a)2 = 1 +
TX
t=2

49

T 2
=

T 2 + 49T − 49
T 2

.
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From direct calculation, we have

uit = yit −
PT

t=2 y
g
itZtPT

t=2 Z
2
t

= yit − ai −
zi1T

2 + 7 (7− c)T
³
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.

Hence as T →∞, we may say that

∆iT =
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T
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T

Ã
1

T

TX
t=2

zit−1

!
− 7

Ã
1

T

TX
t=2

�it

!
+Op

¡
T−2

¢
.

Let

ρ̂GLS =

PNPT uit−1uitPNPT u2it−1
=

CNT

DNT
.

Now evaluate at c = 7. Then we have
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and
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Note that the two terms, I1 and I2 will be given in (A-3) and (A-4), respectively.

Now consider

plimN→∞
1

N

CNT

DNT
=

I1 + 98σ
2
z + 7σ

2
� +O

¡
T−1

¢
I2 + 98σ2z +O (T−1)

.

Note that we can define the long-differencing regression as

zit − zi1 = ρ (zit−1 − zi1)− (1− ρ) zi1 + �it,

so that we have

ρ̂long =
1
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1
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,

and
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,

since with a moderate large T

E
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¸
. (A-4)

Therefore, for a large T we have

plimN→∞
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Plugging ρ = 1− 7/T yields

plimN→∞ (ρ̂GLS − ρ) = (1− ρ)
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49 + 7 (1 + ρ)
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=
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.

Appendix D: Proof of Proposition 2

According to Phillips and Sul (2007), the WG estimator ρ̂WG|CSD of the model (14)-(16) can be

decomposed into

ρ̂WG|CSD = (1− η) ρ̂WG|CSI + ηρ̂F,WG + op
¡
T−1

¢
,

where ρ̂WG|CSI is the WG estimator when the observations are cross-sectionally independent, η =

m2
δσ
2
θ

¡
σ2 +m2

δσ
2
θ

¢−1
, m2

δ = (NK)−1
PN
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s=1 δ

2
si, σ2θ = (KT )−1

PK
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2
st, and σ2 =

N−1T−1
PN

i=1

PT
t=1 �

2
it. η has the interpretation of the degree of cross-sectional dependence. When

η = 1, the observations are maximally dependent and when η = 0 they are independent. Since ρ̂F,WG
does not depend on N , the N−asymptotic bias for ρ̂WG|CSD is seen to depend on the inconsistency
of ρ̂F,WG. As shown by Phillips and Sul (2007),

plimN→∞(ρ̂WG|CSD − ρ) = − (1− η)
1 + ρ

T
+ η (ρ̂F,WG − ρ) + op

¡
T−1

¢
,

as N →∞. The strategy of the proof follows the strategy taken by Phillips and Sul (2007).
For the inconsistency for WG estimator, see Proposition 3 in Phillips and Sul (2007). Here we

takeK = 1 case and then provide inconsistency for RMA estimator under cross-sectional dependence.

For RMA, define

plimN→∞ρ̂RMA|CSD = − (1− ρ)plimN→∞
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NT
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,

where
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NT ≡ − (1− ρ)
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Further decompose B (ρ, T ) into

B (ρ, T ) = plimN→∞
¡
ρ̂RMA|CSI − ρ

¢
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2
.

In the single factor (K = 1) case, the latent model representation is

yit = μi + zit, zit = ρzit−1 + uit, uit = δiθt + �it,

with

zit = δi
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Since yit − ȳit = zit − z̄it, we have
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Combining the two results gives
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Denote
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Table 1: Comparison of Alternative Estimators in Panel AR(1) case

Bias MSE ×100
T0 N ρ AB1 AB2 AB3 WG HK RMA AB1 AB2 AB3 WG HK RMA

5 50 0.3 0.11 0.70 0.70 -0.28 -0.11 0.03 1.70 48.62 48.98 8.08 1.71 0.97
5 50 0.5 0.03 0.50 0.50 -0.33 -0.14 0.03 0.62 24.54 24.97 11.63 2.58 0.94
5 50 0.9 -0.01 0.05 0.09 -0.47 -0.23 0.01 0.26 0.39 0.92 22.33 5.89 0.75
5 100 0.3 0.11 0.70 0.70 -0.27 -0.10 0.03 1.49 48.64 48.98 7.78 1.38 0.54
5 100 0.5 0.04 0.50 0.50 -0.33 -0.14 0.03 0.40 24.56 24.98 11.26 2.20 0.54

5 100 0.9 0.00 0.05 0.09 -0.47 -0.23 0.01 0.13 0.34 0.91 21.91 5.46 0.39
5 200 0.3 0.11 0.70 0.70 -0.27 -0.10 0.03 1.39 48.64 48.98 7.67 1.23 0.30
5 200 0.5 0.04 0.50 0.50 -0.33 -0.14 0.03 0.29 24.57 24.97 11.12 2.03 0.32
5 200 0.9 0.00 0.05 0.09 -0.46 -0.22 0.01 0.06 0.31 0.90 21.67 5.22 0.19

10 50 0.3 0.05 0.70 0.70 -0.14 -0.03 0.03 0.55 48.57 48.97 2.04 0.33 0.39
10 50 0.5 0.01 0.49 0.50 -0.16 -0.04 0.04 0.27 24.49 24.97 2.88 0.42 0.40
10 50 0.9 -0.01 0.04 0.09 -0.25 -0.10 0.01 0.17 0.29 0.90 6.21 1.11 0.19
10 100 0.3 0.06 0.70 0.70 -0.14 -0.03 0.03 0.44 48.61 48.98 1.94 0.21 0.23
10 100 0.5 0.02 0.50 0.50 -0.16 -0.04 0.04 0.15 24.53 24.97 2.76 0.29 0.26
10 100 0.9 0.00 0.05 0.09 -0.24 -0.09 0.01 0.08 0.26 0.90 6.06 0.98 0.10
10 200 0.3 0.06 0.70 0.70 -0.13 -0.03 0.03 0.39 48.63 48.98 1.87 0.14 0.16
10 200 0.5 0.02 0.50 0.50 -0.16 -0.04 0.04 0.09 24.55 24.97 2.69 0.23 0.20
10 200 0.9 0.00 0.05 0.09 -0.24 -0.09 0.02 0.04 0.25 0.90 6.00 0.92 0.07

20 50 0.3 0.02 0.70 0.70 -0.07 -0.01 0.02 0.19 48.51 48.97 0.54 0.11 0.17
20 50 0.5 0.00 0.49 0.50 -0.08 -0.01 0.03 0.11 24.39 24.97 0.72 0.11 0.20
20 50 0.9 -0.01 0.03 0.09 -0.12 -0.04 0.02 0.08 0.14 0.87 1.53 0.19 0.07

20 100 0.3 0.03 0.70 0.70 -0.07 -0.01 0.02 0.13 48.56 48.97 0.49 0.06 0.11
20 100 0.5 0.01 0.49 0.50 -0.08 -0.01 0.03 0.06 24.46 24.96 0.67 0.06 0.14
20 100 0.9 0.00 0.03 0.09 -0.12 -0.04 0.02 0.04 0.13 0.88 1.48 0.16 0.05
20 200 0.3 0.03 0.70 0.70 -0.07 -0.01 0.02 0.10 48.61 48.98 0.47 0.03 0.08
20 200 0.5 0.01 0.49 0.50 -0.08 -0.01 0.03 0.03 24.50 24.97 0.64 0.04 0.12
20 200 0.9 0.00 0.03 0.09 -0.12 -0.04 0.02 0.02 0.12 0.88 1.46 0.14 0.04

Notes: AB1, AB2, and AB3, respectively represent the Arellano and Bover (1995) estimators using σμ = 1, 5 and

10. Entries are obtained from 10,000 replications. DGP is

yit = μi + zit,

zit = ρzit−1 + �it,

where �it
iid∼ N (0, 1), μi iid∼ N 1, σ2μ .
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Table 2: Comparison of WG and RMA in Panel AR(2) case

Bias Variance × 100 MSE × 100
ρ̂pRMA ρ̂2 ρ̂pRMA ρ̂2 ρ̂pRMA ρ̂2

T0 N ρ ρ2 WG RMA WG RMA WG RMA WG RMA WG RMA WG RMA

5 50 0.9 0.2 -0.62 -0.20 -0.19 0.02 0.92 1.82 0.53 0.84 39.70 5.99 4.07 0.88
5 100 0.9 0.2 -0.62 -0.20 -0.19 0.02 0.47 0.93 0.28 0.44 38.77 4.92 3.78 0.49
5 200 0.9 0.2 -0.62 -0.20 -0.19 0.02 0.23 0.46 0.13 0.21 38.40 4.37 3.62 0.27

10 50 0.9 0.2 -0.32 -0.07 -0.11 0.02 0.28 0.37 0.23 0.29 10.82 0.79 1.46 0.32
10 100 0.9 0.2 -0.32 -0.06 -0.11 0.02 0.14 0.19 0.12 0.15 10.46 0.56 1.31 0.19
10 200 0.9 0.2 -0.32 -0.06 -0.11 0.02 0.07 0.09 0.06 0.07 10.40 0.46 1.26 0.12

20 50 0.9 0.2 -0.16 -0.01 -0.06 0.01 0.08 0.09 0.10 0.11 2.63 0.10 0.48 0.13
20 100 0.9 0.2 -0.16 -0.01 -0.06 0.01 0.04 0.04 0.05 0.06 2.54 0.05 0.42 0.08
20 200 0.9 0.2 -0.16 -0.01 -0.06 0.01 0.02 0.02 0.03 0.03 2.50 0.03 0.39 0.05

5 50 0.5 0.2 -0.58 -0.31 -0.24 -0.11 1.15 2.23 0.50 0.73 34.50 11.70 6.31 1.87
5 100 0.5 0.2 -0.57 -0.30 -0.24 -0.10 0.55 1.08 0.25 0.36 33.31 10.16 5.95 1.43
5 200 0.5 0.2 -0.57 -0.30 -0.24 -0.10 0.28 0.54 0.12 0.18 32.85 9.47 5.77 1.22

10 50 0.5 0.2 -0.28 -0.11 -0.13 -0.04 0.39 0.58 0.21 0.25 8.28 1.69 1.84 0.41
10 100 0.5 0.2 -0.28 -0.10 -0.13 -0.04 0.20 0.30 0.10 0.13 7.92 1.32 1.70 0.27
10 200 0.5 0.2 -0.28 -0.10 -0.13 -0.04 0.10 0.15 0.05 0.06 7.80 1.16 1.64 0.20

20 50 0.5 0.2 -0.13 -0.03 -0.06 -0.01 0.16 0.21 0.10 0.11 1.94 0.28 0.51 0.12
20 100 0.5 0.2 -0.13 -0.03 -0.06 -0.01 0.08 0.10 0.05 0.06 1.82 0.17 0.45 0.07
20 200 0.5 0.2 -0.13 -0.03 -0.06 -0.01 0.04 0.05 0.03 0.03 1.77 0.12 0.42 0.04

Notes: DGP is

yit = μi + zit,

zit = ρ1zit−1 + ρ2zit−2 + �it,

where ρ = ρ1 + ρ2, �it
iid∼ N(0, 1), and μi

iid∼ N 0, σ2μ .
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Table 3: Comparison of WG and RMA with Exogeneous Variable.

Bias Variance × 100 MSE × 100 Rej. of t-test
AR(1) case

T0 N ρ WG RMA WG RMA WG RMA WG RMA

5 50 0.9 -0.12 0.00 0.52 0.51 1.91 0.51 0.47 0.08
5 100 0.9 -0.12 0.00 0.26 0.25 1.65 0.25 0.72 0.08
5 200 0.9 -0.12 0.00 0.13 0.13 1.50 0.13 0.94 0.08
10 50 0.9 -0.05 0.00 0.23 0.22 0.48 0.22 0.22 0.06
10 100 0.9 -0.05 0.01 0.12 0.11 0.36 0.12 0.36 0.07
10 200 0.9 -0.05 0.01 0.06 0.06 0.30 0.06 0.60 0.07
20 50 0.9 -0.02 0.00 0.11 0.11 0.14 0.11 0.10 0.06
20 100 0.9 -0.02 0.00 0.05 0.05 0.09 0.05 0.14 0.06

20 200 0.9 -0.02 0.00 0.03 0.03 0.06 0.03 0.22 0.07

AR(2) case: ρ2 = 0.2

T0 N ρ WG RMA WG RMA WG RMA WG RMA

5 50 0.9 -0.13 -0.05 0.52 0.49 2.11 0.71 0.51 0.16
5 100 0.9 -0.12 -0.04 0.26 0.25 1.82 0.45 0.77 0.22
5 200 0.9 -0.13 -0.05 0.13 0.12 1.70 0.33 0.96 0.33
10 50 0.9 -0.06 -0.01 0.24 0.23 0.54 0.24 0.25 0.08
10 100 0.9 -0.05 -0.01 0.11 0.11 0.41 0.12 0.41 0.07
10 200 0.9 -0.05 -0.01 0.06 0.06 0.36 0.07 0.68 0.09
20 50 0.9 -0.02 0.00 0.11 0.11 0.15 0.11 0.11 0.05
20 100 0.9 -0.02 0.00 0.05 0.05 0.10 0.05 0.17 0.06

20 200 0.9 -0.02 0.00 0.03 0.03 0.07 0.03 0.28 0.06

Notes: DGP for AR(2) case is

yit = μi + zit,

zit = ρ1zit−1 + ρ2zit−2 + γqit + �it,

where ρ = ρ1 + ρ2, �it
iid∼ N(0, 1), μi

iid∼ N (0, 1), qit
iid∼ N (0, 1) and γ = 1.
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Table 4: Comparison of Alternative Estimators in Panel AR(1) under Cross-sectional Dependence

Bias MSE ×100
T0 N ρ AB1 AB2 AB3 WG HK RMA AB1 AB2 AB3 WG HK RMA

5 50 0.3 -0.04 0.69 0.70 -0.30 -0.13 -0.01 9.71 47.82 48.93 15.84 11.20 14.63
5 50 0.5 -0.09 0.49 0.50 -0.37 -0.18 -0.02 10.46 23.60 24.92 20.75 13.04 14.00
5 50 0.9 -0.10 -0.02 0.08 -0.52 -0.29 -0.06 5.83 2.68 0.87 34.28 18.39 12.58
5 100 0.3 -0.03 0.69 0.70 -0.29 -0.13 0.00 9.44 47.90 48.94 15.22 10.53 13.72
5 100 0.5 -0.09 0.49 0.50 -0.36 -0.17 -0.01 10.04 23.69 24.93 20.03 12.29 13.12

5 100 0.9 -0.09 -0.02 0.08 -0.52 -0.29 -0.06 5.58 2.51 0.86 33.84 17.88 12.15
5 200 0.3 -0.02 0.69 0.70 -0.29 -0.12 0.00 9.22 47.94 48.94 14.91 10.36 13.46
5 200 0.5 -0.08 0.49 0.50 -0.36 -0.17 -0.01 9.83 23.74 24.92 19.50 11.93 12.76
5 200 0.9 -0.09 -0.01 0.08 -0.51 -0.28 -0.06 5.37 2.42 0.85 33.18 17.30 11.55

10 50 0.3 -0.04 0.69 0.70 -0.16 -0.05 0.00 4.99 47.66 48.92 6.19 4.76 5.76
10 50 0.5 -0.08 0.48 0.50 -0.19 -0.08 0.00 5.20 23.31 24.91 7.36 4.85 5.05
10 50 0.9 -0.11 -0.06 0.08 -0.29 -0.14 -0.04 4.34 2.34 0.79 11.19 5.36 3.25
10 100 0.3 -0.04 0.69 0.70 -0.15 -0.05 0.01 4.76 47.78 48.93 5.92 4.52 5.53
10 100 0.5 -0.07 0.48 0.50 -0.19 -0.07 0.00 4.91 23.46 24.92 7.02 4.53 4.76
10 100 0.9 -0.11 -0.05 0.08 -0.29 -0.14 -0.03 4.08 2.14 0.79 10.79 4.99 2.91
10 200 0.3 -0.04 0.69 0.70 -0.15 -0.05 0.00 4.61 47.85 48.93 5.83 4.34 5.28
10 200 0.5 -0.08 0.48 0.50 -0.19 -0.07 0.00 4.76 23.53 24.92 6.95 4.37 4.57
10 200 0.9 -0.11 -0.05 0.08 -0.29 -0.14 -0.04 3.92 2.00 0.77 10.84 4.93 2.88

20 50 0.3 -0.03 0.69 0.70 -0.08 -0.02 0.01 2.49 47.24 48.90 2.63 2.24 2.57
20 50 0.5 -0.05 0.47 0.50 -0.10 -0.03 0.01 2.37 22.60 24.88 2.74 2.05 2.14
20 50 0.9 -0.09 -0.07 0.07 -0.15 -0.07 -0.01 2.14 1.51 0.61 3.21 1.50 0.92

20 100 0.3 -0.02 0.69 0.70 -0.08 -0.02 0.01 2.35 47.46 48.92 2.49 2.12 2.46
20 100 0.5 -0.04 0.48 0.50 -0.10 -0.03 0.01 2.23 22.87 24.90 2.62 1.94 2.05
20 100 0.9 -0.09 -0.06 0.07 -0.15 -0.07 -0.01 2.06 1.42 0.62 3.14 1.43 0.87
20 200 0.3 -0.03 0.69 0.70 -0.08 -0.02 0.01 2.25 47.60 48.92 2.42 2.01 2.32
20 200 0.5 -0.04 0.48 0.50 -0.10 -0.03 0.01 2.14 23.03 24.91 2.55 1.85 1.94
20 200 0.9 -0.09 -0.06 0.07 -0.15 -0.07 -0.01 1.98 1.36 0.63 3.08 1.37 0.82

Notes: See footnotes in Table 1. DGP is

yit = ai + ρyit−1 + uit,

uit = δiFt + �it,

where �it
iid∼ N (0, 1) , δi

iid∼ N (1, 1) and Ft
iid∼ N (0, 1).
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